$L_{\rm inear}\;S_{\rm ystems}$

Math 214 Spring 2007 ©2007 Ron Buckmire Fowler 110 MWF 2:30pm - 3:25pm http://faculty.oxy.edu/ron/math/214/07/

Class 23: Wednesday March 28

TITLE Determinants CURRENT READING Poole 4.3

Summary

Let's explore the wonderful world of *eigenvectors*, *eigenvalues* and *eigenspaces* of a square $n \times n$ matrix.

Homework Assignment HW#21 Poole, Section 4.3: 4,5,10,15,16,17,18,20,21,23,33. EXTRA CREDIT 34,36,38.

DEFINITION

The eigenvalues of a square $n \times n$ matrix A satisfy the **characteristic polynomial** of the matrix A, given by $det(A - \lambda I) = 0$.

EXAMPLE

	0	1	0	
Find the eigenvalues and corresponding eigenspaces of the matrix	0	0	1	
	2	-5	4	

DEFINITION

The **algebraic multiplicity** of an eigenvalue is the multiplicity of this eigenvalue as a root of the characteristic polynomial. The **geometric multiplicity** of an eigenvalue λ is the *dimension* of the corresponding eigenspace E_{λ} , i.e. the number of vectors in a basis for the eigenspace.

Exercise

	ΓO	1	0 -	
Write down the algebraic and geometric multiplicity of the eigenvalues of the matrix	0	0	1	
	2	-5	4	

Theorem 4.15

The eigenvalues of a triangular matrix (lower triangular, upper triangular or diagonal) are simply the entries along its main diagonal.

Theorem 4.16

Let A be a square matrix with eigenvalue λ and eigenvector \vec{x}

(i) For any integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector \vec{x}

(ii) If A is invertible, then $1/\lambda$ is an eigenvalue of A^{-1} with corresponding eigenvector \vec{x}

Theorem 4.18

A square matrix A is invertible if and only if 0 is NOT an eigenvalue of A.

EXAMPLE

Poole, page 296, #19. (a) Show that for any square matrix A, A^T and A have the same characteristic polynomial and thus the same eigenvalues.

(b) Give an example of a 2x2 matrix A for which A^T and A have different eigenspaces.

Exercise

Show that the eigenvalues $A = \begin{bmatrix} 3 & 2 \\ 5 & 0 \end{bmatrix}$ are 5 and -2 and $E_{-2} = \operatorname{span}\left(\begin{bmatrix} 2 \\ -5 \end{bmatrix}\right)$ and $E_5 = \operatorname{span}\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$

Find the eigenvalues of 3A, A^{-1} , A^2 and A + I

Linear Independence of Eigenvectors

Theorem 4.19

Suppose the $n \times n$ matrix A has m eigenvectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_m$ with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$. IF \vec{x} is a vector in \mathbb{R}^n that can be written as a linear combination of these vectors, THEN

$$A^k \vec{x} = c_1 \lambda_1^k \vec{v}_1 + c_2 \lambda_2^k \vec{v}_2 + c_3 \lambda_3^k \vec{v}_3 + \dots c_m \lambda_m^k \vec{v}_m$$

EXAMPLE

Let's use this result to show that $\begin{bmatrix} 3 & 2 \\ 5 & 0 \end{bmatrix}^6 \begin{bmatrix} 1 \\ 8 \end{bmatrix} = \begin{bmatrix} 46747 \\ 47195 \end{bmatrix}$

Theorem 4.20

Let A be an $n \times n$ matrix with m distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$ and corresponding eigenvectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_m$. Then $\vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_m$ are linearly independent.

Properties of the Eigenvalues of a $n \times n$ Matrix

The **Product** of the eigenvalues equals the **determinant** of the $n \times n$ matrix.

$$\lambda_1 \lambda_2 \lambda_3 \dots \lambda_n = |A|$$

The **Sum** of the eigenvalues equals the **trace** of the $n \times n$ matrix (the sum of the diagonal entries)

$$\lambda_1 + \lambda_2 + \lambda_3 + \ldots + \lambda_n = \sum_{i=1}^n A_{ii}$$