Class 21: Friday March 23

TITLE Introduction to Eigenvectors and Eigenvalues

CURRENT READING Poole 4.1

Summary
Let’s explore the wonderful world of *eigenvectors*, *eigenvalues* and *eigenspaces* of a square 2x2 matrix.

Homework Assignment

HW #19 Poole, Section 4.1: 4, 5, 6, 10, 11, 16, 17, 21, 22. EXTRA CREDIT 36, 37

DEFINITION
An **eigenvalue** of a \(n \times n \) matrix \(A \) is a scalar value \(\lambda \) such that there exists a non-zero vector \(\vec{x} \) where \(A\vec{x} = \lambda \vec{x} \). The vector \(\vec{x} \) is called the **eigenvector** corresponding to the **eigenvalue** \(\lambda \).

1. **Eigenvalues and Eigenvectors**

Interestingly, in order to find the eigenvalues of a matrix, one just has to solve the equation \(A\vec{x} - \lambda \vec{x} = \vec{0} \) or \((A - \lambda I)\vec{x} = \vec{0} \).

This means that the eigenvectors of matrix \(A \) corresponding to eigenvalue \(\lambda \) lie in the nullspace of the matrix \(A - \lambda I \). It’s not clear right now, but it turns out that the eigenvalues of \(A \) are the solution of the equation \(\det(A - \lambda I) = 0 \). This equation is known as the **characteristic polynomial** of the matrix \(A \).

EXAMPLE

Find the eigenvalues and eigenvectors of \[
\begin{pmatrix}
1 & 2 \\
2 & 4
\end{pmatrix}
\]
2. Eigenvectors and Eigenspace

Definition
Given a $n \times n$ matrix A with eigenvalue λ the set of all vectors corresponding to the eigenvalue λ plus the zero vector is called the **eigenspace** of λ and is denoted E_λ.

Exercise
Write down the eigenspaces associated with the eigenvalues of $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$

Example
Consider the matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Let’s show that the eigenvalues of A are the solution of $\lambda^2 - \text{tr}(A)\lambda + \det(A) = 0$.

3. Properties of the Eigenvalues of a Matrix

The **Product** of the eigenvalues equals the determinant of the matrix.

$$\lambda_1 \lambda_2 = |A|$$

The **Sum** of the eigenvalues equals the trace of the matrix (the sum of the diagonal entries)

$$\lambda_1 + \lambda_2 = \sum_{i=1}^{2} A_{ii}$$