Class 19: Monday March 19

TITLE Introduction to Linear Transformations

CURRENT READING Poole 3.6

Summary
We’ll introduce the concept of linear transformation. This is a very cool, visually interesting application of linear algebra.

Gateway Assignment
HW 17: Poole, Section 3.6: 1, 2, 3, 6, 7, 15, 17, 19. EXTRA CREDIT 28.

Warm-Up
What’s a function (broadly defined)? Can you think of function which has a $n \times n$ matrix as its input and a number as an output? What about a function which has a 5×1 vector as input and a 3×1 vector as output?

DEFINITION
A transformation or function or mapping from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector $\vec{v} \in \mathbb{R}^n$ a unique vector $T(\vec{v}) \in \mathbb{R}^m$. The domain of T is \mathbb{R}^n and the co-domain is \mathbb{R}^m. This is denoted $T : \mathbb{R}^n \to \mathbb{R}^m$. Given a vector \vec{v} in the domain of T, the vector $T(\vec{v})$ is called the image of \vec{v} under the action of T. The set of all possible images $T(\vec{v})$ is called the range of T.

DEFINITION
A transformation (or mapping or function) $T : \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation if

1. $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u} and \vec{v} in \mathbb{R}^n
2. $T(c\vec{v}) = cT(\vec{v})$ for all \vec{v} in \mathbb{R}^n and all scalars c.

EXAMPLE
Given $A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 4 \end{bmatrix}$. If we multiply A by an arbitrary vector $\begin{bmatrix} x \\ y \end{bmatrix}$ we can define a transformation $T_A : \mathbb{R}^2 \to \mathbb{R}^3$.

What is the image of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$? What is the pre-image of $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$? What is the range of T_A? Is T_A a linear transformation?
Theorem 3.30
Given a $m \times n$ matrix, the transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ defined by $T_A(\vec{x}) = A\vec{x}$ (for all \vec{x} in \mathbb{R}^n) is a linear transformation.

Theorem 3.31
Every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ can be written as a matrix transformation T_A where A is the $m \times n$ matrix whose columns are given by the images of the standard basis vectors in \mathbb{R}^n under the action of T, i.e.

$$A = \begin{bmatrix}
T(\hat{e}_1) & T(\hat{e}_2) & T(\hat{e}_3) & \ldots & T(\hat{e}_n)
\end{bmatrix}$$

This matrix is called the **standard matrix of the linear transformation** T and can be denoted $[T]$.

Exercise
Find the standard matrix for the linear transformation $F : \mathbb{R}^2 \to \mathbb{R}^2$ which maps each point to its reflection in the x-axis.

Find the standard matrix for the linear transformation $R : \mathbb{R}^2 \to \mathbb{R}^2$ which rotates each point 90° counterclockwise about the origin.

EXAMPLE
Let’s find the standard matrix for the linear transformation R_θ which rotates a point θ degrees counterclockwise about the origin.
Composition of Linear Transformations
Suppose $T : \mathbb{R}^m \to \mathbb{R}^n$ and $S : \mathbb{R}^n \to \mathbb{R}^p$ are linear transformations. Then the composition of the two transformations is denoted $S \circ T$. This means that a vector in the domain of T is mapped into the co-domain of S. The interpretation of the composition is a vector \vec{v} acted on by T which is then acted on by S, i.e. $(S \circ T)(\vec{v}) = S(T(\vec{v}))$

Theorem 3.32
The standard matrix of a composition of linear transformations is equal to the product of the standard matrices of each transformation. $[S \circ T] = [S][T]$

EXAMPLE
Let's find the standard matrix of the linear transformation that first rotates a point 90° about the origin and then reflects the result in the x-axis.

Definition
The identity transformation is the transformation $I : \mathbb{R}^n \to \mathbb{R}^n$ which leaves every vector unchanged. If S and T are linear transformations from \mathbb{R}^n to \mathbb{R}^n so that $S \circ T = I$ and $T \circ S = I$ then S and T are inverse transformations of each other. Both S and T are said to be invertible linear transformations.

Theorem 3.33
Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear transformation. Then the standard matrix $[T]$ is an invertible matrix, and $[T^{-1}] = [T]^{-1}$. In other words, the standard matrix for the inverse linear transformation of T is the inverse of the standard matrix for the linear transformation T.

Exercise
Show that the linear transformation which maps a point θ degrees counterclockwise in \mathbb{R}^2 about the origin is the inverse of the linear transformation which maps a point θ degrees clockwise.