Linear $\mathbf{S}_{\text {ystems }}$

Class 19: Monday March 19

TITLE Introduction to Linear Transformations
CURRENT READING Poole 3.6

Summary

We'll introduce the concept of linear transformation. This is a very cool, visually interesting application of linear algebra.

Homework Assignment

HW 17: Poole, Section 3.6: 1,2,3,6,7,15,17,19. EXTRA CREDIT 28.

Warm-Up

What's a function (broadly defined)? Can you think of function which has a $n \times n$ matrix as its input and a number as an output? What about a function which has a 5×1 vector as input and a 3×1 vector as output?

DEFINITION

A transformation or function or mapping from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector $\vec{v} \in \mathbb{R}^{n}$ a unique vector $T(\vec{v}) \in \mathbb{R}^{m}$. The domain of T is \mathbb{R}^{n} and the co-domain is \mathbb{R}^{m}. This is denoted $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Given a vector \vec{v} in the domain of T, the vector $T(\vec{v})$ is called the image of \vec{v} under the action of T. The set of all possible images $T(\vec{v})$ is called the range of T.

DEFINITION

A transformation (or mapping or function) $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if

1. $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all \vec{u} and \vec{v} in \mathbb{R}^{n}
2. $T(c \vec{v})=c T(\vec{v})$ for all \vec{v} in \mathbb{R}^{n} and all scalars c.

EXAMPLE

Given $A=\left[\begin{array}{cc}1 & 0 \\ 2 & -1 \\ 3 & 4\end{array}\right]$. If we multiply A by an arbitrary vector $\left[\begin{array}{l}x \\ y\end{array}\right]$ we can define a transformation $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$.
What is the image of $\left[\begin{array}{c}1 \\ -1\end{array}\right]$? What is the pre-image of $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$? What is the range of T_{A} ? Is T_{A} a linear transformation?

Given a $m \times n$ matrix, the transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined by $T_{A}(\vec{x})=A \vec{x}\left(\right.$ for all \vec{x} in \mathbb{R}^{n}) is a linear transformation.

Theorem 3.31

Every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be written as a matrix transformation T_{A} where A is the $m \times n$ matrix whose columns are given by the images of the standard basis vectors in \mathbb{R}^{n} under the action of T, i.e.

$$
A=\left[\begin{array}{lllll}
T\left(\hat{e}_{1}\right) & T\left(\hat{e}_{2}\right) & T\left(\hat{e}_{3}\right) & \ldots & T\left(\hat{e}_{n}\right)
\end{array}\right]
$$

This matrix is called the standard matrix of the linear transformation T and can be denoted $[T]$.

Exercise

Find the standard matrix for the linear transformation $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which maps each point to its reflection in the x-axis.

Find the standard matrix for the linear transformation $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which rotates each point 90° counterclockwise about the origin.

EXAMPLE
Let's find the standard matrix for the linear transformation R_{θ} which rotates a point θ degrees counterclockwise about the origin.

Composition of Linear Transformations

Suppose $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ are linear transformations. Then the composition of the two transformations is denoted $S \circ T$. This means that a vector in the domain of T is mapped into the co-domain of S. The interpretation of the composition is a vector \vec{v} acted on by T which is then acted on by S, i.e. $(S \circ T)(\vec{v})=S(T(\vec{v}))$

Theorem 3.32

The standard matrix of a composition of linear transformations is equal to the product of the standard matrices of each transformation. $[S \circ T]=[S][T]$

EXAMPLE
Let's find the standard matrix of the linear transformation that first rotates a point 90° about the origin and then reflects the result in the x-axis.

DEFINITION

The identity transformation is the transformation $I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which leaves every vector unchanged. If S and T are linear transformations from \mathbb{R}^{n} to \mathbb{R}^{n} so that $S \circ T=I$ and $T \circ S=I$ then S and T are inverse transformations of each other. Both S and T are said to be invertible linear transformations.

Theorem 3.33

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear transformation. Then the standard matrix $[T]$ is an invertible matrix, and $\left[T^{-1}\right]=[T]^{-1}$. In other words, the standard matrix for the inverse linear transformation of T is the inverse of the standard matrix for the linear transformation T.

Exercise

Show that the linear transformation which maps a point θ degrees counterclockwise in \mathbb{R}^{2} about the origin is the inverse of the linear transformation which maps a point θ degrees clockwise.

