SUMMARY Projections, Equations of Lines
CURRENT READING Poole 1.2 and 1.3

RECALL
At the end of the previous class we introduced the concept of a projection of one vector on another. We’ll explore this concept a bit more and begin our foray into Section 1.3 of the text by looking at new ways to define equations of lines using vectors.

Homework Assignment #3
Section 1.2: #31, 41, 57, 62, 63, 64: DUE MON JAN 29

Projection.
For any vectors \(\vec{u} \) and \(\vec{v} \) where \(\vec{u} \neq 0 \) then the projection of \(\vec{v} \) onto \(\vec{u} \) is the vector \(\text{proj}_{\vec{u}}(\vec{v}) \) defined by:

\[
\text{proj}_{\vec{u}}(\vec{v}) = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^2} \right) \vec{u}
\]

Draw a picture of the projection of \(\vec{v} \) onto \(\vec{u} \) in the space below:

EXAMPLE
Let’s look at the derivation of this formula.

\[
\vec{p} = |\vec{v}| \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^2} \right) \left(\frac{\vec{u}}{|\vec{u}|} \right) = \left(\frac{\vec{u} \cdot \vec{v}}{|\vec{u}|^2} \right) \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{\vec{u} \cdot \vec{u}} \right) \vec{u} = \text{proj}_{\vec{u}}(\vec{v})
\]

Poole, Page 56, #6. Find the projection of \(\vec{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) onto \(\vec{u} = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \).
Equations of a Line in \mathbb{R}^2 and \mathbb{R}^3

The main way we often think of lines in euclidean space (i.e. the space we are used to living in where lines are perfectly “straight” and go on forever) is to define a line in \mathbb{R}^n as the set of points composing the one dimensional object connecting two distinct points in space.

General Form of the Equation of a Line in \mathbb{R}^2

The general form of the equation of a line L in \mathbb{R}^2 is $ax + by = c$. In this case the vector $\hat{n} = \begin{bmatrix} a \\ b \end{bmatrix}$ is a normal vector to the line L.

Normal Form of the Equation of a Line in \mathbb{R}^2

The normal form of the equation of a line L in \mathbb{R}^2 is $\hat{n} \cdot (\vec{x} - \vec{p}) = 0$ or $\hat{n} \cdot \vec{x} = \hat{n} \cdot \vec{p})$. In this case the non-zero vector \hat{n} is again a normal vector to the line L and \vec{p} is a particular given point on the line L.

Vector Form of the Equation of a Line in \mathbb{R}^2

The vector form of the equation of a line L in \mathbb{R}^2 (or \mathbb{R}^n) is $\vec{x} = \vec{p} + t\vec{d}$. In this case the non-zero vector \vec{d} is a direction vector for the line L and \vec{p} is a particular given point on the line L.

Parametric Form of the Equation of a Line in \mathbb{R}^2

The parametric form of the equation of a line L in \mathbb{R}^2 (or \mathbb{R}^n) is the set of equations formed from the components of the vector form of the equation of the line. In this case those equations are $x = p_1 + d_1 t$ and $y = p_2 + d_2 t$ where $\vec{p} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$ and $\vec{d} = \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$. Note, if the vector has n components, then the parametric form of L will consist of n linear equations in the parametric variable t.

Group Work

Consider the line $y = -\frac{x}{2}$. On the axes below, draw in the line as well as the direction vector \vec{d}, the normal vector \hat{n} and an example of a point vector \vec{p}.

Write down the general, vector, parametric and normal forms of the equation of the line also.