$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Math 214 Spring 2006
© 2006 Ron Buckmire
Fowler 307 MWF 2:30pm - 3:25pm
http://faculty.oxy.edu/ron/math/214/06/

Class 32: Wednesday April 26

TITLE Singular Value Decomposition
CURRENT READING Poole 7.4

Summary

Our final new topic will be the singular value decomposition of a matrix.

Homework Assignment

Poole, Section 7.4 : 2,5,6,7,13,45,46,47.

DEFINITION

The singular values of a $m \times n$ matrix A are the square roots of the eigenvalues of $A^{T} A$ and are usually denoted by $\sigma_{1}, \sigma_{2}, \sigma_{3} \ldots \sigma_{n}$. Often the singular values are arranged so that $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \ldots \geq \sigma_{n}$.

Theorem 7.13

Let A be an $m \times n$ matrix with singular values $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \ldots \geq \sigma_{r}>0$ and $\sigma_{r+1}=\sigma_{r+2}=$ $\ldots=\sigma_{n}=0$. THEN there exists an $m \times m$ orthogonal matrix U , an $n \times n$ orthogonal matrix V, and a block-diagonal $m \times n$ matrix Σ such that $A=U \Sigma V^{T}$.
The columns of U are called the left singular vectors of A and the columns of V are called the right singular vectors of $A . U$ and V are NOT uniquely determined by A but Σ must contain the singular values of A.

EXAMPLE

Find the singular value decomposition for the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$.

Theorem 7.15

Let $A=U \Sigma V^{T}$ be a singular value decomposition of an $m \times n$ matrix A. Let $\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{r}$ be all the nonzero singular values of A. THEN
(a) The rank of A is r.
(b) The first r columns of $U,\left[\vec{u}_{1}, \overrightarrow{u_{2}}, \ldots, \vec{u}_{r}\right]$ form an orthonormal basis for $\operatorname{col}(A)$.
(c) The last $m-r$ columns of $U,\left[\vec{u}_{r+1}, \vec{u}_{r+2}, \ldots, \vec{u}_{m}\right]$ form an orthonormal basis for $\operatorname{null}\left(A^{T}\right)$.
(d) The first r columns of $V,\left[\vec{v}_{1}, \overrightarrow{v_{2}}, \ldots, \vec{u}_{r}\right]$ form an orthonormal basis for $\operatorname{row}(A)$.
(e) The last $n-r$ columns of $V,\left[\vec{v}_{r+1}, \vec{v}_{r+2}, \ldots, \vec{v}_{n}\right]$ form an orthonormal basis for $\operatorname{null}(A)$. Pretty cool, eh?

Notice also, that by definition $A \vec{v}_{i}=\sigma_{i} \vec{u}_{i}$ for $i=1$ to r. So, singular values are "eigenvalue-like." There are similarities and differences between eigenvalues and singular values, however.

GroupWork

Consider $\mathrm{A}=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 4\end{array}\right]$. What important property do you notice about A ?
Find the eigenvalues of A.

Find the singular values of A (i.e. the positive square roots of the eigenvalues of $A^{T} A$).

What do you notice about the answers to the two previous questions? Explain your observation.

Recall that if $A \sim B$ then the eigenvalues of A and B are equal. This is NOT true for singular values. Recall that the determinant of a matrix A is equal to the product of the eigenvalues; it is also equal to the product of the singular values of A.

