$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Fowler 307 MWF 2:30pm - 3:25pm
© 2006 Ron Buckmire

Class 28: Wednesday April 12

TITLE Gram-Schmidt Process and QR factorization
CURRENT READING Poole 5.3

Summary

There is a very cool algorithm for producing an orthogonal basis from "regular" basis for a given subspace. The process is known as Gram-Schmidt orthogonalization.

Homework Assignment

Poole, Section 5.3 : 1,2,3,4,6,11,13, 17. EXTRA CREDIT 18.

1. Gram-Schmidt Orthogonalization

Suppose we start off with three linearly independent vectors \vec{a}, \vec{b} and \vec{c}. First we will construct three orthogonal vectors \vec{A}, \vec{B} and \vec{C} and then normalize these to produce three orthonormal vectors $\overrightarrow{q_{1}}, \overrightarrow{q_{2}}$ and $\overrightarrow{q_{3}}$ from our original linearly independent trio.

STEP 1. First choice, start with \vec{a}.

1. Let $\vec{A}=\vec{a}$.

STEP 2. Second choice, select in the direction of \vec{b} with the projection in the direction of \vec{a} removed. Then this vector should be orthogonal to \vec{a}.
2. Let $\vec{B}=\vec{b}-\frac{\vec{A}^{T} \vec{b}}{\vec{A}^{T} \vec{A}} \vec{A}$

STEP 3. Third choice, select in the direction of \vec{c} with the projections of \vec{c} in the direction of \vec{a} and in the direction of \vec{b} removed. So this third vector will be orthogonal to both of those!
3. Let $\vec{C}=\vec{c}-\frac{\vec{A}^{T} \vec{c}}{\vec{A}^{T} \vec{A}} \vec{A}-\frac{\vec{B}^{T} \vec{c}}{\vec{B}^{T} \vec{B}} \vec{B}$

STEP 4. Normalize A, B and C by dividing by their magnitudes to obtain $\overrightarrow{q_{1}}=\frac{\vec{A}}{\|\vec{A}\|}, \overrightarrow{q_{2}}=\frac{\vec{B}}{\|\overrightarrow{B \|}\|}$ and $\overrightarrow{q_{3}}=\frac{\vec{C}}{\|\vec{C}\|}$.
The vectors $\overrightarrow{q_{1}}, \overrightarrow{q_{2}}$ and $\overrightarrow{q_{3}}$ are orthonormal!

Let's use Gram-Schmidt to convert the linearly independent vectors $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ -2\end{array}\right],\left[\begin{array}{c}3 \\ -3 \\ 3\end{array}\right]\right\}$ to three orthonormal vectors.

2. $A=Q R$ Factorization

Gram-Schmidt Orthogonalization is equivalent to factoring a matrix A into the product of an orthogonal matrix Q and an upper triangular matrix R.

$$
\left[\begin{array}{ccc}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]=\left[\begin{array}{lll}
\overrightarrow{q_{1}} & \overrightarrow{q_{2}} & \overrightarrow{q_{3}}
\end{array}\right]\left[\begin{array}{ccc}
{\overrightarrow{q_{1}}}^{T} \vec{a} & {\overrightarrow{q_{1}}}^{T} \vec{b} & \vec{q}_{1}^{T} \vec{c} \\
& {\overrightarrow{q_{2}}}^{T} \vec{b} & {\overrightarrow{q_{2}}}^{T} \vec{c} \\
& & {\overrightarrow{q_{3}}}^{T} \vec{c}
\end{array}\right]
$$

Exercise

Strang, page 230, \#23. Find $\overrightarrow{q_{1}}, \overrightarrow{q_{2}}$, and $\overrightarrow{q_{3}}$ as combinations of the independent columns of $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 0 & 0 & 5 \\ 0 & 3 & 6\end{array}\right]$ and write A as $Q R$.

