Linear Systems

Math 214 Spring 2006 ©2006 Ron Buckmire Fowler 307 MWF 2:30pm - 3:25pm http://faculty.oxy.edu/ron/math/214/06/

Class 27: Monday April 10

TITLE Orthogonal Complements and Orthogonal Projections **CURRENT READING** Poole 5.1

Summary

We will learn about an incredibly important feature of vectors and orthogonal vector spaces.

Homework Assignment Poole, Section 5.2: 2,3,4,5,6,7,12,15,16,17,19,20,21. EXTRA CREDIT 29.

DEFINITION

Two subspaces \mathcal{V} and \mathcal{W} are said to be **orthogonal** if every vector $\vec{v} \in \mathcal{V}$ is perpendicular to every vector $\vec{w} \in \mathcal{W}$. The **orthogonal complement** of a subspace \mathcal{V} contains EVERY vector that is perpendicular to (vectors in) \mathcal{V} . This space is denoted \mathcal{V}^{\perp} . In other words, $\vec{v} \cdot \vec{w} = 0$ or $\vec{v}^T \vec{w} = 0$ for every \vec{v} in \mathcal{V} and \vec{w} in \mathcal{W} .

$$\mathcal{W}^{\perp} = \{ \vec{v} \in \mathbb{R}^n : \vec{v} \cdot \vec{w} = 0 \text{ for all } \vec{w} \text{ in } \mathcal{W} \}$$

Example 1. Q: In \mathbb{R}^3 , let V = the z-axis. What is V^{\perp} ? A:

Q: In \mathbb{R}^3 , what is the orthogonal complement of the *xy*-plane? **A:**_____

Q: In \mathbb{R}^3 , are the *xy*-plane and the *yz*-plane orthogonal complements of each other?

A: No, there are vectors in one plane that are not perpendicular to vectors in the other plane. (Can you find one of each?)

Q: In \mathbb{R}^4 (with axes x_1, x_2, x_3, x_4), what is the orthogonal complement of the x_1x_2 -plane?

We can summarize some of the properties of orthogonal complements.

Theorem 5.9

Let \mathcal{W} be a subspace of \mathbb{R}^n .

[a.] \mathcal{W}^{\perp} is a subspace of \mathbb{R}^n

[b.] $(\mathcal{W}^{\perp})^{\perp} = \mathcal{W}$

[c.] $(\mathcal{W}^{\perp}) \cap \mathcal{W} = \vec{0}$

[d.] If
$$\mathcal{W}=\operatorname{span}(\vec{w_1},\vec{w_2},\vec{w_3},\ldots,\vec{w_n})$$
 then \vec{v} is in \mathcal{W}^{\perp} only if $\vec{v}\cdot\vec{w_i}=0$ for every $\vec{w_i}$ in \mathcal{W} for $i=1\ldots n$

These features can be described using the associated subspaces of an $m \times n$ matrix A.

Theorem 5.10

Let A be an $m \times n$ matrix. Then the orthogonal complement of the row space of A is the null space of A. The orthogonal complement of the column space of A is the null space of A^T (sometimes called the left null space). Mathematically, this can be written:

 $(\operatorname{row}(A))^{\perp} = \operatorname{null}(A) \text{ and } (\operatorname{col}(A))^{\perp} = \operatorname{null}(A^T)$

These four subspaces are called the **fundamental subspaces of the matrix** A.

EXAMPLE

Let's find bases for the four fundamental subspaces of the matrix $A = \begin{bmatrix} 1 & 1 & 3 & 1 & 6 \\ 2 & -1 & 0 & 1 & -1 \\ -3 & 2 & 1 & -2 & 1 \\ 4 & 1 & 6 & 1 & 3 \end{bmatrix}$. Suppose we know that $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 1 & 0 & -1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ and $\operatorname{rref}(A^T) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Write down

the dimensions of each fundamental subspace and describe the subspace-orthogonal complement pairs.

DEFINITION

Let \mathcal{W} be a subspace of \mathbb{R}^n and let $\{\vec{w}_1, \vec{w}_2, \vec{w}_3, \ldots, \vec{w}_n\}$ be an orthogonal basis for \mathcal{W} . For any vector \vec{v} in \mathbb{R}^n , the orthogonal project of \vec{v} onto \mathcal{W} is defined as

$$\operatorname{proj}_{\mathcal{W}}(\vec{v}) = \sum_{j=1}^{n} \operatorname{proj}_{\vec{w}_j}(\vec{v}) = \sum_{j=1}^{n} \frac{\vec{v} \cdot \vec{w}_j}{\vec{w}_j \cdot \vec{w}_j} \vec{v}$$

The component of \vec{v} orthogonal to \mathcal{W} is the vector $\operatorname{perp}_{\mathcal{W}}(\vec{v}) = \vec{v} - \operatorname{proj}_{\mathcal{W}}(\vec{v})$ NOTE: this implies that $\vec{v} = \operatorname{perp}_{\mathcal{W}}(\vec{v}) + \operatorname{proj}_{\mathcal{W}}(\vec{v})$ (Draw a picture in \mathbb{R}^{2} !)

Theorem 5.11

Let \mathcal{W} be a subspace of \mathbb{R}^n and let \vec{v} be ANY vector in \mathbb{R}^n . THEN there exist unique vectors \vec{w} in \mathcal{W} and \vec{w}^{\perp} in \mathcal{W}^{\perp} such that $\vec{v} = \vec{w} + \vec{w}^{\perp}$. This theorem is known as the **Orthogonal Decomposition Theorem.** Note: a corollary of this theorem is that $(\mathcal{W}^{\perp})^{\perp} = \mathcal{W}$.

EXAMPLE

Consider the subspace \mathcal{W} , x - y + 2z = 0 with the vector $\vec{\not{=}} \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}$. Show that the orthogonal

decomposition of \vec{v} is $\begin{bmatrix} 5/3\\1/3\\-2/3 \end{bmatrix}$ and $\begin{bmatrix} 4/3\\-4/3\\8/3 \end{bmatrix}$

Theorem 5.13

Let \mathcal{W} be a subspace of \mathbb{R}^n then $\dim(\mathcal{W}) + \dim(\mathcal{W}^{\perp}) = n$.

A corollary of Theorem 5.13 becomes clear when one applies it to the associated subspaces of a $m \times n$ matrix A. This is known as **The Rank Theorem**.

 $\dim(\operatorname{row}(A)) + \dim(\operatorname{null}(A)) = n \text{ and } \dim(\operatorname{col}(A)) + \dim(\operatorname{null}(A^T)) = m$

The Rank Theorem

If A is an $m \times n$ matrix, then rank(A) + nullity(A) = n and rank(A) + nullity $(A^T) = m$.

(Recall, $\operatorname{rank}(A) = \operatorname{rank}(A^T)$)