Class 26: Friday April 7

TITLE Orthogonality and Projections Revisited

CURRENT READING Poole 5.1

Summary
We shall return to the investigation of projections and orthogonality, this time with more increased generality.

Homework Assignment
Poole, Section 5.1: 3, 4, 5, 6, 8, 9, 12, 13, 16, 17, 30, 31. EXTRA CREDIT 28, 33.

1. **Orthogonal Bases**

DEFINITION
An **orthogonal basis** of a subspace \(W \) of \(\mathbb{R}^n \) is a basis of \(W \) that is an **orthogonal set** of vectors. An orthogonal set of vectors is a collection of vectors \(\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_k \} \) where *every* pair of distinct vectors is orthogonal to each other, i.e. \(\vec{v}_i \cdot \vec{v}_j = 0 \) for all \(i \neq j \).

Theorem 5.1
If \(\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_k \} \) is an orthogonal set of nonzero vectors in \(\mathbb{R}^n \) then those vectors are linearly independent.

EXAMPLE
Show that \[
\begin{pmatrix}
2 \\
1 \\
-1
\end{pmatrix},
\begin{pmatrix}
0 \\
1 \\
1
\end{pmatrix}
\] and \[
\begin{pmatrix}
1 \\
-1 \\
1
\end{pmatrix}
\] form an orthogonal basis for \(\mathbb{R}^3 \).

Theorem 5.2
Let \(\{ \vec{v}_1, \vec{v}_2, \vec{v}_3, \ldots, \vec{v}_k \} \) be an orthogonal basis for a subspace \(W \) of \(\mathbb{R}^n \) and let \(\vec{w} \) be any vector in \(W \). THEN the unique scalars \(c_1, c_2, c_3, \ldots, c_n \) (also known as coordinates) where \(\vec{w} = \sum_{i=1}^{n} c_i \vec{v}_i \) are given by

\[
c_i = \frac{\vec{w} \cdot \vec{v}_i}{\vec{v}_i \cdot \vec{v}_i}
\]

EXAMPLE
Let’s show how this formula for the coordinates is derived. (Doesn’t it look familiar??)
Exercise

Given the orthogonal basis \(\beta = \left\{ \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \right\} \) and the vector \(\vec{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \) find the coordinates of \(\vec{w} \) with respect to \(\beta \), i.e. \([\vec{w}]_\beta\).

DEFINITION
An orthonormal basis of a subspace \(W \) of \(\mathbb{R}^n \) is a basis of \(W \) that consists of an orthonormal set of vectors. An orthonormal set of vectors is a collection of orthogonal unit vectors \(\{\vec{q}_1, \vec{q}_2, \vec{q}_3, \ldots, \vec{q}_k\} \) where \(\vec{q}_i \cdot \vec{q}_j = \delta_{i,j} \). The symbol \(\delta_{i,j} \) is known as the Kronecker delta function and has the property that \(\delta_{i,j} = 0 \) when \(i \neq j \) and \(\delta_{i,j} = 1 \) when \(i = j \).

Exercise

Form an orthonormal basis for \(\mathbb{R}^3 \) from the orthogonal basis \(\beta \) given in the previous Exercise.

2. Orthogonal Matrices

DEFINITION
A \(n \times n \) matrix \(Q \) is said to be an orthogonal matrix if the columns (and rows) of the matrix form an orthonormal set.

Theorem 5.4
The columns of an \(m \times n \) matrix \(Q \) form an orthonormal set if and only if \(Q^T Q = I_n \).

Theorem 5.5
A square matrix \(Q \) is orthogonal if and only if \(Q^{-1} = Q^T \).

Theorem 5.8
Let \(Q \) be an orthogonal matrix.

(a) \(Q^{-1} \) is orthogonal.
(b) \(\det(Q) = \pm 1 \).
(c) If \(\lambda \) is an eigenvalue of \(Q \), then \(|\lambda| = 1 \).
(d) If \(Q_1 \) and \(Q_2 \) are orthogonal \(n \times n \) matrices, then so is \(Q_1 Q_2 \).

EXAMPLE
Let’s form a square orthogonal matrix from the orthonormal basis found in the previous exercise and illustrate some of the results from Theorem 5.4, 5.5 and 5.8.