$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Class 12: Friday February 17

SUMMARY The Inverse Matrix
CURRENT READING Poole 3.3

Summary

We will introduce a very important concept, the Inverse Matrix.

Homework Assignment

HW \# 12: Section 3.3 \# 2,5, 9,10,19,20,21, 22,23 EXTRA CREDIT \# 13

1. Inverse Matrix

Consider the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $M=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
Write down the product of M and A. That is, $M A$ and $A M$.

We call M, the matrix which when multiplied by A produces the identity matrix. It is denoted A^{-1}.
It has the property that $A^{-1} A=A A^{-1}=I$
The factor $a d-b c$ is known as the determinant of the matrix A. We will learn more about how to compute determinants and their significance later. However, it is true that if the determinant of a matrix equals zero, then that matrix is NOT invertible, i.e. $\operatorname{det} A=0 \Rightarrow A^{-1}$ doesn't exist. It is also true that if A^{-1} doesnotexist $\Rightarrow \operatorname{det}(A)=0$.

Theorem 3.6

If A is an invertible matrix, then its inverse A^{-1} is unique.

Theorem 3.7

If A is an invertible $n \times n$ matrix, then the system of linear equations given by $A \vec{x}=\vec{b}$ has the unique solution $\vec{x}=A^{-1} \vec{b}$ for any \vec{b} in \mathbb{R}^{n}.

2. Computing Inverses: Gauss-Jordan Elimination

In order to actually generate or find an inverse matrix we use a process called Gauss-Jordan elimination. This is identical to the Gaussian elimination process we already know, except extended.
Consider the system

$$
\begin{aligned}
& 1 x+2 y-1 z=1 \\
& 2 x+2 y+4 z=3 \\
& 1 x+3 y-3 z=0
\end{aligned}
$$

Write down the augmented matrix with the identity matrix as the right hand side.
$\left[\begin{array}{ccc:ccc}1 & 2 & -1 \\ 2 & 2 & 4 & 1 & 0 & 0 \\ 1 & 3 & -3 & 0 & 0 & 0 \\ \hline\end{array}\right]$

We will do Gaussian Elimination on this system until we have produced the identity matrix on the left $3 x 3$ matrix.

3. Properties of Inverses

(1) $\left(A^{-1}\right)^{-1}=A$
(2) $(A B)^{-1}=B^{-1} A-1$
(3) $(A B C)^{-1}=C^{-1} B^{-1} A-1$
(4) $\left(A^{-1}\right)^{n}=\left(A^{n}\right)^{-1}$ for positive integers n
(5) $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$
(6) $\frac{1}{c} A^{-1}=\left(c A^{-1}\right.$ for positive scalars c

Exercise

Consider $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{cc}-5 & -7 \\ 2 & 3\end{array}\right]$. Show that $A^{-1} B^{-1}=(B A)^{-1}$.

4. Determining Singularity

If the determinant of a coefficient matrix is zero, then the system is singular (no solution or infinite number of solutions) and thus the linear system can not be solved.

$$
\operatorname{det}(A)=0 \longleftrightarrow A^{-1} \text { doesn't exist }
$$

So it is NOT always possible to find $A^{-1} . A^{-1}$ exists ONLY IF a $n \times n$ matrix A has $\operatorname{rank}(n)$.

5. Using Gauss-Jordan To Solve Linear Systems

Gauss-Jordan takes the augmented matrix $[A \mid I]$ and converts it into $\left[I \mid A^{-1}\right]$.
Q: What has happened to each block matrix in the augmented matrix?
A: Each block matrix been multiplied by by A^{-1}.
Therefor Gauss-Jordan can also take the matrix $[A|I| \vec{b}]$ and convert into $\left[I\left|A^{-1}\right| A^{-1} \vec{b}\right]$
Why is this useful?

Gauss-Jordan works by solving n linear systems at once.
For a 3 x 3 system it is solving $A \overrightarrow{x_{1}}=\overrightarrow{e_{1}}, A \overrightarrow{x_{2}}=\overrightarrow{e_{2}}$ and $A \overrightarrow{x_{3}}=\overrightarrow{e_{3}}$
where $\overrightarrow{e_{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \overrightarrow{e_{2}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\overrightarrow{e_{3}}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
The vectors $\overrightarrow{x_{1}}, \overrightarrow{x_{2}}$ and $\overrightarrow{x_{3}}$ which solve the 3 equations above are simply the columns of the inverse matrix.

Example

Consider the system (with $d \neq 0$)

$$
\left[\begin{array}{ccc|cccc}
1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & (d+1) & 3 & 0 & 1 & 0 & 5 \\
0 & 2 & d & 0 & 0 & 1 & -4
\end{array}\right] \text { Let's use Gauss-Jordan to find the solution }
$$

