$\mathbf{L}_{\text {inear }} \mathbf{S}_{\text {ystems }}$

Math 214 Spring 2006
© 2006 Ron Buckmire

Fowler 307 MWF 2:30pm - 3:25pm
http://faculty.oxy.edu/ron/math/214/06/

Class 10: Monday February 13

SUMMARY Matrix Properties
 CURRENT READING Poole 3.1

Summary

We begin our study of Chapter 3 by considering matrices as objects in their own right, and not just as ways of viewing, or parts of, linear systems.

Homework Assignment

HW \# 10: Section 3.1: 1,2,3,4,5,6,7,8,34,35. EXTRA CREDIT 37: DUE WED FEB 15

1. Matrix Definitions

DEFINITION

Let A be an $m \times n$ matrix (with m rows and n columns). If $m=n$, then A is said to be a square matrix. For $1 \leq i \leq m$ and $1 \leq j \leq n$, the (i, j)-entry of A, denoted by $A_{i, j}$, is the number in the i th
 $\operatorname{col}_{j}(A)$.
Note. For convenience, some books, including ours, drop the comma from $A_{i, j}$, and instead write $A_{i j}$. You may do this too, except when it can cause ambiguity, as in: $A_{123}=A_{12,3}$ or $A_{1,23}$?

Q: An m-component column vector is a ? \times ? matrix? A:
Q: An n-component row vector is a ? \times ? matrix? A:

DEFINITION

Let A and B be $m \times n$ matrices. Then their sum $A+B$ is an $m \times n$ matrix C defined by: $C_{i, j}=A_{i, j}+B_{i, j}$.
Example 1. Compute $B+A$, where $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$.

DEFINITION

Let A and B be $m \times n$ matrices. Then A is said to be equal to B if both A and B have the same dimensions and if $A_{i, j}=B_{i, j}$.
Example 2. Q: Are $\left[\begin{array}{lll}1 & 0 & -3\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right]$ equal? A: No! (Why not?)

DEFINITION

Let A be a $m \times n$ matrix and c is a real number. Then $c A$ is said to a scalar multiple of A and $c A$ is obtained by multiplying each element of A by c.

DEFINITION

Let O be a $m \times n$ matrix called the zero matrix where every entry equals zero. Clearly, $A+O=$ $O+A=A$ and $A-A=-A+A=O$. The zero matrix acts like the matrix "additive identity" also known as the number "zero."

2. Matrix Multiplication

We add matrices component-wise: $(A+B)_{i, j}=A_{i, j}+B_{i, j}$. But we do not multiply matrices componentwise: $(A B)_{i, j} \neq A_{i, j} B_{i, j}$ (just as vector addition is component-wise, but the dot product isn't).

DEFINITION

Let A be an $m \times n$ matrix, and B an $n \times q$ matrix. Then their product $A B$ is an $m \times q$ matrix C defined by $C_{i, j}=\operatorname{row}_{i}(A) \cdot \operatorname{col}_{j}(B)$. (Equivalently, C can be defined by: $\operatorname{col}_{j}(C)=A \operatorname{col}_{j}(B)$.)
Example 3. Compute $B A$, where $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$.

Q: What type of matrix can be multiplied by itself? Ans: A square matrix.
Notation: $A A=A^{2}, A A A=A^{3}, \cdots$. Also, note that $A^{r} A^{s}=A^{r+s}$ and $\left(A^{r}\right)^{s}=A^{r s}$ when r and s are non-negative integers.
Example 4. Compute A^{2} and A^{3}

DEFINITION

The $n \times n$ identity matrix I or I_{n} is a square matrix defined to have 1's along its diagonal, and 0's elsewhere. The identity matrix acts like the matrix "multiplicative identity" also known as the number "one." Clearly, $A I=I A=A$.

DEFINITION

Two $n \times n$ matrices A and B are said to be inverses of each other if $A B=I_{n}$ and $B A=I_{n}$.

3. Matrix Transposes

DEFINITION

Given a matrix A, the transpose matrix is denoted A^{T}. The rows of A become the columns of A^{T}. If A is $m \times n$ then A^{T} is $n \times m$. Specifically, $A_{i j}^{T}=A_{j i}$.

4. Properties of the Transpose

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(A B)^{T}=B^{T} A^{T}$
- $(c A)^{T}=c A^{T}$
- $\left(A^{r}\right)^{T}=\left(A^{T}\right)^{r}$ for non-negative integers r
- Recall that $A \vec{x}$ is a linear combination of the columns of A, so $x^{T} A^{T}$ is a linear combination of the ROWS of A^{T}

Exercise

Confirm the above transpose properties with $A=\left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]$.

5. Symmetric Matrices

DEFINITION

A matrix is said to be symmetric if it is its own transpose, i.e. $A^{T}=A$.
The inverse of a symmetric matrix is also symmetric.
The product of a matrix with its transpose produces a symmetric matrix. $R^{T} R=R^{T}\left(R^{T}\right)^{T}=R^{T} R$

6. Block Matrices

Consider $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ and $B=\left[\begin{array}{lll}B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23}\end{array}\right]$

Exercise

Write down $A B$ in terms of the elements of A and B.

Now, suppose the elements of A and B are themselves matrices!
$A_{11}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $A_{12}=\left[\begin{array}{cc}2 & -1 \\ 1 & 3 \\ 4 & 0\end{array}\right]$ and $A_{21}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $A_{22}=\left[\begin{array}{ll}1 & 7 \\ 7 & 2\end{array}\right]$
$B_{11}=\left[\begin{array}{cc}4 & 3 \\ -1 & 2 \\ 1 & -5\end{array}\right], B_{12}=\left[\begin{array}{ll}1 & 2 \\ 2 & 1 \\ 3 & 3\end{array}\right], B_{13}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], B_{21}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B_{22}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $B_{23}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$
Now compute $A B$ block by block. First check that matrix A and B are partitioned conformably for block multiplication. (In other words, that in every possibly matrix muyltiplication the dimensions match up properly.)

