$\mathbf{L i n e a r} \mathbf{S}_{\text {ystems }}$

Fowler 307 MWF $2: 30 \mathrm{pm}-3: 25 \mathrm{pm}$
http://faculty.oxy.edu/ron/math/214/06/

Class 9: Friday February 10

SUMMARY Applications of Linear Systems

CURRENT READING Poole 2.3 and 2.4

Summary

Now that we have formally defined linear independence and linear dependence and introduced the span concept, we can apply these concepts to linear systems in matrix form.

Homework Assignment

HW \#8: Section 2.4 4,11,12,31,32,39,40,41,46. EXTRA CREDIT 47. DUE MON FEB 13

Recall that we ended Class 8 by asking whether two given vectors are linear independent or not. Another way to answer this question is to use the result the text calls Theorem 2.6.

Theorem 2.6

Let $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}$ be column vectors in \mathbb{R}^{n} and let the matrix A be the $n \times m$ matrix with these vectors as columns. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}$ are linearly dependent IF AND ONLY IF the homogeneous linear system $A \vec{x}=\overrightarrow{0}$ with augmented matrix $[A \mid \overrightarrow{0}]$ has a non-trivial solution (i.e. one where $\vec{x} \neq \overrightarrow{0}$).

EXAMPLE

Determine whether $\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1 \\ -3\end{array}\right]$ are linearly independent or not.

Theorem 2.7

Let $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}$ be row vectors in \mathbb{R}^{n} and let the martix A be the $m \times n$ matrix with these vectors as rows. The vectors $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots \overrightarrow{v_{n}}$ are linearly dependent IF AND ONLY IF $\operatorname{rank}(A)<m$.

Exercise

Use Theorem 2.7 to determine whether $\left[\begin{array}{lll}1 & 0 & 3\end{array}\right]$, $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $\left[\begin{array}{ccc}-1 & 1 & 3\end{array}\right]$ are linearly independent or not. (Look carefully. How are these vectors different from the ones in the EXAMPLE?)

These results can be summarized in Theorem 2.8.

Theorem 2.8

Any set of m vectors in \mathbb{R}^{n} is linearly dependent IF $m>n$.

GroupWork
Poole, Page 114, \# 13. Balance the chemical reaction $\mathrm{Na}_{2} \mathrm{C} \mathrm{O}_{3}+\mathrm{C}+\mathrm{N}_{2} \longrightarrow \mathrm{NaCN}+\mathrm{CO}$.

Poole, Page 114, \# 39(a). Find the equation of the parabola which passes through the points (0,1), $(-1,4)$ and $(2,1)$.

