- 1. Consider $\vec{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} k^2 \\ k \\ -3 \end{bmatrix}$ where k is some unknown scalar.
- (a) 3 points. Find the values of the scalar k for which the two vectors \vec{u} and \vec{v} are orthogonal to each other.

The other.

And
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
, $\begin{pmatrix} K^2 \\ K \\ -3 \end{pmatrix} = 1$, $K^2 - 1$, $K + 2$, (-3)

$$= K^2 - K - 6$$

$$= (K - 3)(K + 2) = 0$$

$$= (K - 3)(K +$$

(b) 2 points. Is it possible to find values of k for which the two vectors \vec{u} and \vec{v} are parallel to each other? EXPLAIN YOUR ANSWER.

There exists ho C and K so

That
$$\vec{u} = c\vec{v}$$

Mat $\vec{u} = c\vec{v}$

There exists ho C and K so

That $\vec{u} = c\vec{v}$, i.e. \vec{u} and \vec{v} are parallel.

No!

(c) 3 points. Let k=0 to produce a specific known vector \vec{v} . Compute $\text{proj}_{\vec{v}}(\vec{v})$ and $\text{proj}_{\vec{v}}(\vec{v})$.

$$\vec{u} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \vec{v} = \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix}$$

$$= \begin{pmatrix} -6 \\ 1+1+4 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = -\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} -6 \\ 1+1+4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix} = -\frac{2}{3} \begin{pmatrix} 0 \\ 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

(d) 2 points. Are your answers in part (c) different? Is this a surprise? EXPLAIN YOUR