
Math 214 Spring 2006 Linear Systems

Report on Test 2 Prof. Ron Buckmire

Point Distribution (N=21)

Range 90+ 85+ 80+ 75+ 70+ 65+ 60+ 55+ 50+ 45+ 40+ 35+ 30-
Grade A+ A A- B+ B B- C+ C C- D+ D D- F
Frequency 0 2 1 4 2 4 0 1 1 2 2 1 1

Summary Overall class performance was not stellar. The average score was 62. The high score was 86.

#1 Fundamental Subspaces of a Matrix. Since the matrix A =




0 1 0
1 0 −1
0 −1 0


 is symmetric, it’s not

too surprising to find out that col(A) = row(A) and that null(A) = null(AT ). According to the Funda-
mental Theorem of Linear Algebra, dim(null(A)) + rank = 3 and since the rank is 2 the nullspaces are one
dimensional subspaces of R3 and row space and column space are two-dimensional subspaces of R3. The

first are spanned by








1
0
1






 and the second are spanned by








1
0
−1


 ,




0
1
0





. Notice every vector in

one of these spaces is orthogonal to each other, and even the two vectors that span the “larger” space are
orthogonal to each other!

#2 Eigenvalues, Eigenvectors, Eigenspaces. To find the eigenspaces of a matrix first one needs to find
the eigenvalues, which solve the characteristic polynomial. To find the characteristic polynomial involves
computing the determinant, det(A − λI) = −λ3 + 2 = 0. This gives 3 distinct eigenvalues 0,

√
2, and

−
√

2. Again, since the matrix is symmetric, we know the eigenvectors will be orthogonal to each other.

Also, since one of the eigenvectors is zero, E0 = null(A) which we know from question 1 is span








1
0
1






.

E√
2 = span








−1
−
√

2
1





 and E−

√
2 = span








−1√
2

1






. A point to note here is that since these three

vectors are orthogonal, they must be linearly independent, so together they form a basis for R3, since they
consist of 3 linearly independent vectors in R3.

#3 Definition of Subspace. The definition of the vector space V may appear scary at first, but look at it
closely. In English the symbols mean “The set of all vectors in R3 where the sum of the first and third
components of each vector equals zero.” (a) To prove V is a subspace one has to check that the set of all
vectors which satisfy this definition 1) contains the zero vector; 2) still satisfies the definition when any two
of them are added together (i.e. closed under vector addition); and 3) still satisfies the definition when any
vector from the set is multiplied by an unknown scalar (i.e. closed under scalar multiplication). (b) Notice
that the basis vectors in E√

2 and E−
√

2 as well as in col(A) and row(A) all obey the definition that the
sum of the first and third components equal zero! Thus if you want to identify V⊥ you could use E0 from
Question 2 or null(A) = null(AT ) from Question 1. This space is the set of all vectors whose first and third
components are equal while the second component is equal to zero. (c) Since bases for V and identical
subspaces have two vectors in their bases, it is a two-dimensional subspace of R3, i.e. a plane through
th origin. It’s orthogonal complement, V⊥, must therefore be a line through the origin, a 1-dimensional
subspace of R3.

#4 Orthogonalization, Normalization. (a) Given a collection of vectors how do we know whether it is a
basis for a subspace? A basis for a k-dimensional space has to be comprised of k linearly independent vectors
from that space. We know V is two-dimensional, and there are two vectors in the proposed basis. Both
vectors in the basis are elements of the space since they satisfy the definition that their sum of first and
third components equal zero. The two vectors are not scalar multiples of one another, so they are linearly
independent. Thus the proposed basis is indeed a basis for V. (b) An orthogonal basis for V would have
to be two vectors which satisfy all the other basis properties but also equal zero when their dot product
is taken, for example, E√

2 and E−
√

2 from Question 2, or the basis for the row space and column space
found in rref(A) from Question 1. (c) An orthonormal basis is one in which all the vectors are orthogonal
to each other and have magnitude one. Since, there’s only one vector in a basis for V⊥ all one needs to do
is normalize it (divide by its magnitude).



#5 Orthogonal decomposition, Projection. Now our goal is revealed, to decompose a random vector,

~b =




2
1
3


 into it’s components in 3 orthogonal directions, where some of those directions lay in V and some

in V⊥. We know that if {~v1, ~v2, ~v3} is an orthogonal basis then any vector ~b can be written as
3∑

i=1

proj~vi
(~b).

We also know that ~b = projV (~b)+projV⊥ (~b). Since V is 2-D and V⊥ is 1-D it’s easier to do the projection of

~b onto V⊥ and THEN find projV(~b) by subtracting. If one uses




1
0
1


 for a basis for V⊥ then projV⊥ (~b) =
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 ·
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1


. Thus projV(~b) =
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3


 − 5

2
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0
1


 = 1

2
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2
1


. This makes sense,

since this last vector does have the property that the sum of its first and third components equals zero, thus
it IS in V. However, to write ~b as asum of projections in 3 directions, we need to find projections of ~b in the
directions of two vectors which form an orthogonal basis for V and add this to the projection we already
have in the V⊥ direction. Luckily, we were asked for an orthogonal basis for V in question 4(b). It turns out

that projV(~b) = 1
2
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This means that ~b =




2
1
3


 =

5
2




1
0
1


 + 1




0
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2
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. Clearly








1
0
1


 ,




0
1
0


 ,




1
0
−1






 is an

orthogonal basis for R3 with the first vector forming a basis for V⊥ and the last two forming an orthogonal
basis for V.


