4. (20 points) Multiple Integration.

a. (10 points) Evaluate $\int \int_R ye^x \, dA$ where R is the first quadrant of the circle of radius 4 centered at the origin. (Sketch the region R).

b. (10 points) Consider $\int_0^1 \int_0^1 \int_{x+y}^{1-y} dz \, dy \, dx = \frac{1}{12}$. Re-compute this integral using a different triple integral which represents the same volume.
3. (20 points) Iterated Integration.

a. (10 points) Evaluate \(\int_{-3}^{0} \int_{0}^{2} \int_{-1}^{1} \cos(x + y + z) - xyz \, dx \, dz \, dy \)

b. (10 points) Evaluate \(\int_{1}^{2} \int_{0}^{\ln z} \frac{1}{x} \, dy \, dx \)
5. (20 points) Constrained Multivariable Optimization, Lagrange Multipliers
The “geometric mean” of \(n \) numbers is defined as \(f(x_1, x_2, \ldots, x_n) = \sqrt[n]{x_1 x_2 x_3 \ldots x_n} \). Suppose that \(x_1, x_2, \ldots, x_n \) are positive numbers such that \(\sum_{i=1}^{n} x_i = x_1 + x_2 + x_3 + \ldots + x_n = c \), where \(c \) is a constant.

a. (10 points) Find the maximum value of the geometric mean of \(n \) positive numbers given the constraint that their sum must be equal to a constant. [HINT: Consider \(f^n \) instead of \(f \)].

b. (10 points) You can deduce from part (a) that the geometric mean of \(n \) numbers is always less than or equal to the arithmetic mean, that is:

\[
\sqrt[n]{x_1 x_2 x_3 \ldots x_n} \leq \frac{x_1 + x_2 + x_3 + \ldots + x_n}{n}
\]

Under what conditions will the geometric mean be exactly equal to the arithmetic mean of those same \(n \) numbers?
EXTRA CREDIT (10 points.) Unconstrained Multivariable Optimization

Consider $f(x, y) = x^4 + y^4 - 4xy + 1$.

a. (5 points) Find the three critical points of $f(x, y)$.

b. (5 points) Use the Second Derivative Test to classify each of the three critical points of $f(x, y)$.
(e) Using the picture alone, estimate the points at which the objective function \(f(x, y) \) achieves a global minimum on the constraint set \(g(x, y) = 0 \) and the values of \(f \) there. EXPLAIN YOUR ANSWER.
(f) Use the Method of Lagrange Multipliers to obtain the minimum value of
\[f(x, y) = x^2 + xy + y^2 \]
on the constraint set \[g(x, y) = x + y - 2 = 0. \]

(g) How would the maximum and minimum on the constraint set change if the constraint set \(g(x, y) \) were changed to \(h(x, y) = x^2 + y^2 - 4 \)? Find the extrema of \(f(x, y) = x^2 + xy + y^2 \) subject to the constraint \(h(x, y) = 0 \) and EXPLAIN YOUR ANSWER.
2. (20 points.) Multiple Integration.

The goal of this question is to evaluate \(\int_0^\infty e^{-x^2} \, dx = \lim_{a \to \infty} \int_0^a e^{-x^2} \, dx. \)

(a) (10 points.) Find \(I(R) = \iint_{D_R} e^{-(x^2+y^2)} \, dx \, dy \) when \(D_R \) is \(x^2 + y^2 \leq R^2 \) (the interior of the circle of radius \(R \) centered at the origin). **HINT:** pick a useful coordinate system!

(b) (5 points.) Take your answer \(I(R) \) to (b) and then let \(R \to \infty \). What is \(\lim_{R \to \infty} \iint_{D_R} e^{-(x^2+y^2)} \, dx \, dy \)?

(c) (5 points.) Given that \(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)} \, dx \, dy = \left(\int_{-\infty}^{\infty} e^{-x^2} \, dx \right)^2 \) then what is the value of \(\int_0^\infty e^{-x^2} \, dx \)?
4. (20 points.) Iterated Integration.

Consider the iterated integral for $V = \int_{-1}^{1} \int_{0}^{x^2} \int_{-1}^{1} dz \, dy \, dx = \frac{4}{3}$

(a) (12 points.) Write down 3 (three) of the 5 (five) other possible triple iterated integrals which represent the exact same value V. HINT: There is no dependence of z upon y) DO NOT EVALUATE THESE INTEGRALS.

(b) (8 points.) Use any one of the iterated integrals you wrote down in part (a) to confirm the value of V.
2. Multivariable Chain Rule. 25 points.

Consider the functions \(u(x, y, z) = f(x - y, y - z, z - x) \). Our goal is to show that a function \(u \) with this form satisfies the following famous partial differential equation

\[
\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0.
\]

(a) (10 points.) Consider a function \(u = f(r, s, t) \) where \(r = r(x, y, z) \), \(s = s(x, y, z) \) and \(t = t(x, y, z) \) are given. In other words, although \(u \) is a function of \(r, s \) and \(t \), since each of these functions is a function of \(x, y \) and \(z \) one can consider \(u \) as a function of \(x, y \) and \(z \).

Use the Chain Rule to write down expressions for \(\frac{\partial u}{\partial x} \), \(\frac{\partial u}{\partial y} \), and \(\frac{\partial u}{\partial z} \). [HINT: draw a “tree diagram” reflecting the relationships between the variables to assist you.]

(b) (15 points.) Let \(r = x - y, s = y - z \) and \(t = z - x \). Use this information and your answer to (a) to show that \(u(x, y, z) = f(x - y, y - z, z - x) \) satisfies the equation \(u_x + u_y + u_z = 0 \).
5. (20 points.) Constrained Multivariable Optimization, Lagrange Multipliers
Recall the Cobb-Douglas function \(P(L,K) = bL^\alpha K^{1-\alpha} \) where the total production \(P \) of a certain product depends on the amount of labor \(L \) used and the amount \(K \) of capital investment (\(0 < \alpha < 1 \) and \(b > 0 \)).
If the cost of a unit of labor is \(m \) and the cost of unit of capital is \(n \), given that the production of the company is fixed at a level \(Q \), what values of \(L \) and \(K \) will minimize the cost function \(C(L,K) = mL + nK \)?

a. (10 points) Write down the equations you need to solve simultaneously to find the answer to the question.

b. (10 points) Solve the equations to find the values of \(L \) and \(K \) which minimize the cost function \(C(L,K) \). (HINT: Eliminate the Lagrange Multiplier first).