Multivariable Calculus

Math 212 Spring 2006 ©2006 Ron Buckmire Fowler 112 MWF 8:30pm - 9:25am http://faculty.oxy.edu/ron/math/212/06/

Class 31: Monday May 1

SUMMARY Conservative Vector Fields
CURRENT READING Williamson & Trotter, §9.2
HOMEWORK Williamson & Trotter, page 418: 19, 20, 21, 22, 23 Extra Credit page 419: 27.

THEOREM

All gradient fields are conservative vector fields. All conservative vector fields have zero curl. All gradient fields have zero curl.

THEOREM: properties of conservative vector fields

Let \vec{F} be a continuous vector field defined in a polygonally connected open set D in \mathbb{R}^n . THEN *each* of the following three statements implies the other two.

(a) The integral $\vec{F}(\vec{x})$ over every piecewise smooth path from \vec{x}_1 to \vec{x}_2 in D has the same value, and we can write it as $\int_{\vec{x}_1}^{\vec{x}_2} \vec{F}(\vec{x}) \cdot d\vec{x} = \int_{\vec{x}_1}^{\vec{x}_2} \vec{\nabla}f(\vec{x}) \cdot d\vec{x} = f(\vec{x}_2) - f(\vec{x}_1)$.

(b) The integral over every piecewise smooth closed path γ in D is zero. In other words $\oint_{\gamma} \vec{F} \cdot d\vec{x} = \oint_{\gamma} \vec{\nabla} f \cdot d\vec{x} = 0$

(c) There is a continuously differentiable function $f: D \to \mathbb{R}$ such that \vec{F} is the gradient of f, i.e. $\vec{\nabla}f = \vec{F}$ for all \vec{x} in D.

THEOREM

IF $\vec{F} : \mathbb{R}^n \to \mathbb{R}^n$ is a continuously differentiable gradient field, then $\vec{F}_{\vec{x}}$, the Jacobian matrix of \vec{F} is symmetric. In other words $\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$ for all i, j = 1, 2, ..., n.

EXAMPLE 1

Williamson & Trotter, page 418, #3. Is $\vec{F}(x,y) = (x - y, x + y)$ a gradient field?

Exercise 2

Williamson & Trotter, page 418, #4. Is $\vec{G}(x, y, z) = (y, z, x)$ a gradient field?

EXAMPLE 2

Williamson & Trotter, page 418, #10. Find a field potential for the given field. $\vec{F}(x,y) = (2xy, x^2 + z^2, 2yz).$

Exercise 2

Williamson & Trotter, page 418, #11. Find a field potential for the given field. $\vec{G}(x,y) = (y \cos(xy), x \cos(xy)).$

GROUPWORK

Williamson & Trotter, page 418, #14. Consider the vector field \vec{F} which is the gradient of the Newtonian potential $f(\vec{x}) = -|\vec{x}|^{-1}$ for nonzero \vec{x} in \mathbb{R}^3 . Find the work done in moving a particle from (1, 1, 1) to (-2, -2, -2) along a smooth curve lying in the domain of \vec{F} .