Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 31: Monday May 1

SUMMARY Conservative Vector Fields
CURRENT READING Williamson \& Trotter, $\S 9.2$
HOMEWORK Williamson \& Trotter, page 418: 19, 20, 21, 22, 23 Extra Credit page 419: 27.

THEOREM

All gradient fields are conservative vector fields. All conservative vector fields have zero curl. All gradient fileds have zero curl.

THEOREM: properties of conservative vector fields

Let \vec{F} be a continuous vector field defined in a polygonally connected open set D in \mathbb{R}^{n}. THEN each of the following three statements implies the other two.
(a) The integral $\vec{F}(\vec{x})$ over every piecewise smooth path from \vec{x}_{1} to \vec{x}_{2} in D has the same value, and we can write it as $\int_{\vec{x}_{1}}^{\vec{x}_{2}} \vec{F}(\vec{x}) \cdot d \vec{x}=\int_{\vec{x}_{1}}^{\vec{x}_{2}} \vec{\nabla} f(\vec{x}) \cdot d \vec{x}=f\left(\vec{x}_{2}\right)-f\left(\vec{x}_{1}\right)$.
(b) The integral over every piecewise smooth closed path γ in D is zero. In other words $\oint_{\gamma} \vec{F} \cdot d \vec{x}=\oint_{\gamma} \vec{\nabla} f \cdot d \vec{x}=0$
(c) There is a continously differentiable function $f: D \rightarrow \mathbb{R}$ such that \vec{F} is the gradient of f, i.e. $\vec{\nabla} f=\vec{F}$ for all \vec{x} in D.

THEOREM

IF $\vec{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuously differentiable gradient field, then $\vec{F}_{\vec{x}}$, the Jacobian matrix of \vec{F} is symmetric. In other words $\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}$ for all $i, j=1,2, \ldots, n$.
EXAMPLE 1
Williamson \& Trotter, page 418, \#3. Is $\vec{F}(x, y)=(x-y, x+y)$ a gradient field?

Exercise 2

Williamson \& Trotter, page $418, \# 4$. Is $\vec{G}(x, y, z)=(y, z, x)$ a gradient field?

EXAMPLE 2
Williamson \& Trotter, page 418, \#10. Find a field potential for the given field.
$\vec{F}(x, y)=\left(2 x y, x^{2}+z^{2}, 2 y z\right)$.

Exercise 2

Williamson \& Trotter, page 418, \#11. Find a field potential for the given field. $\vec{G}(x, y)=(y \cos (x y), x \cos (x y))$.

GroupWork

Williamson \& Trotter, page 418, \#14. Consider the vector field \vec{F} which is the gradient of the Newtonian potential $f(\vec{x})=-|\vec{x}|^{-1}$ for nonzero \vec{x} in \mathbb{R}^{3}. Find the work done in moving a particle from $(1,1,1)$ to $(-2,-2,-2)$ along a smooth curve lying in the domain of \vec{F}.

