
Multivariable Calculus
Math 212 Spring 2006 Fowler 112 MWF 8:30pm - 9:25am
c©2006 Ron Buckmire http://faculty.oxy.edu/ron/math/212/06/

Class 29: Monday April 24

SUMMARY Green’s Theorem
CURRENT READING Williamson & Trotter, §9.1
HOMEWORK page 408: 3, 4, 6, 7, 10 Extra Credit page 409: 15, 18, 20

THEOREM: Green’s Theorem
Given a planar region D whose boundary is a single closed curve γ parametrized by a function
~g(t) so that as t increases from a to b, ~g(t) traces out γ once in the counter-clockwise direction,
then if F (x, y) and G(x, y) are real-valued functions defined on D including its boundary,
then the formula for Green’ Theorem is:

∫ ∫

D

(
∂G

∂x
− ∂F

∂y

)
dx dy =

∮

γ

F dx + G dy (Green’s Theorem)

EXAMPLE 1
Williamson & Trotter, page 408, #1. Use Green’s Theorem to compute the value of

the line integral

∮

γ

y dx + x2 dy where γ is the indicated path.

γ is the circle given by g(t) = (cos t, sin t), 0 ≤ t ≤ 2π.

Exercise 1
Williamson & Trotter, page 408, #2. Repeat problem #1, this time with γ being the
square with corners at (±1,±1), traced counter-clockwise.
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EXAMPLE 2
Williamson & Trotter, page 408, #11. Show that if D is a simple region bounded by
a piecewise smooth curve γ, traced counter clockwise, then the area of the interior of γ (i.e.
the area of D) is given by

A(D) =
1

2

∮

γ

−y dx + x dy

Now that we know about curl and div we can use them to re-write the Green’s Theorem
result. Note that the integrand in the area integral in Green’s Theorem is the non-zero
component in ~∇× ~F where ~F (x, y) = (F (x, y), G(x, y), 0)

THEOREM: Stokes’ Theorem in the Plane
So, in vector format, we can write Green’s Theorem as

∫ ∫

D

(~∇× ~F ) · k̂ dA =

∮

∂D

~F · d~x

This result is known as Stokes’ Theorem in the Plane. Note that d~x = t̂ds where s is a
parameter representing arc length along the curve γ (not important) in a direction t̂ always
tangent to the curve.
In Stokes’ Theorem we are dealing with a vector field in R2 which has the form ~F =
(F (x, y), G(x, y)). In Gauss’ Theorem we are dealing with a vector field which has the

form ~H = (−G(x, y), F (x, y))
Suppose we had a unit vector n̂ which is orthogonal in the plane (i.e. normal) to the curve
γ at every point. This means that n̂ is at 90 degrees (orthogonal) to the tangent vector t̂
and points away from the interior of a closed region D where γ is a path which makes up
the boundary of D. Mathematically, then n̂ · t̂ = 0.
We can show that ~H · d~x = ~F · n̂ ds. (Please note that d~x = (dx, dy) and ds n̂ = (−dy, dx)
so that (ds)2 = (dx)2 + (dy)2 = |d~x|2. Can you visualize this?)

Since ~H · d~x = (−G,F ) · (dx, dy) = −G dx + F dy = (F,G) · (dy,−dx) = ~F · n̂ ds

But using Green’s Theorem on ~H = (−G(x, y), F (x, y)) and recalling ~F = (F (x, y), G(x, y))
produces

∫

γ

~H · d~x =

∫

γ

−G(x, y) dx + F (x, y) dy =

∫ ∫

D

(
∂

∂x
[F (x, y)]− ∂

∂y
[−G(x, y)]

)
dA

∫

γ

~F · n̂ ds =

∫ ∫

D

(
∂F

∂x
+

∂G

∂y

)
dA

But the right hand side of this expression should remind you of the divergence operator.
So we can also re-write Gauss’ theorem using another differential vector operator, this time
div ~F

THEOREM: Gauss’ Theorem in the Plane

∫ ∫

D

~∇ · ~F dA =

∫

∂D

~F · n̂ ds
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THEOREM: Divergence Theorem

∫ ∫

∂D

~F · d ~A =

∫ ∫ ∫

D

~∇ · ~F dV

The divergence theorem is the most general form or the Gauss’ Theorem, equating the inte-
gral of the divergence of a vector field ~F (~x) through a volume of space D to the surface area
integral over the boundary of the region, called ∂D.

EXAMPLE 1

Willliamson & Trotter, Page 408, # 9. Evaluate

∫

C

(x2 − y2) dx + (x2 + y2) dy where

C is the circle of radius 1 centered at the origin and traced clockwise.

Exercise 1
Willliamson & Trotter, Page 408, # 12. Let f be a real valued function with continuous
second order derivatives in an open set D in R2. Let ~F a vector field defined in D by

~F = ~∇f(~x). Show that if ~F = (F (~x), G(~x)), then the equation
∂G

∂x
− ∂F

∂y
= 0 at all points

in region D.


