Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 29: Monday April 24

SUMMARY Green's Theorem
CURRENT READING Williamson \& Trotter, §9.1
HOMEWORK page 408: 3, 4, 6, 7, 10 Extra Credit page 409: 15, 18, 20

THEOREM: Green's Theorem

Given a planar region D whose boundary is a single closed curve γ parametrized by a function $\vec{g}(t)$ so that as t increases from a to $b, \vec{g}(t)$ traces out γ once in the counter-clockwise direction, then if $F(x, y)$ and $G(x, y)$ are real-valued functions defined on D including its boundary, then the formula for Green' Theorem is:

$$
\begin{equation*}
\iint_{D}\left(\frac{\partial G}{\partial x}-\frac{\partial F}{\partial y}\right) d x d y=\oint_{\gamma} F d x+G d y \tag{Green'sTheorem}
\end{equation*}
$$

EXAMPLE 1

Williamson \& Trotter, page 408, \#1. Use Green's Theorem to compute the value of the line integral $\oint_{\gamma} y d x+x^{2} d y$ where γ is the indicated path.
γ is the circle given by $g(t)=(\cos t, \sin t), 0 \leq t \leq 2 \pi$.

Exercise 1

Williamson \& Trotter, page 408, \#2. Repeat problem \#1, this time with γ being the square with corners at $(\pm 1, \pm 1)$, traced counter-clockwise.

EXAMPLE 2

Williamson \& Trotter, page 408, \#11. Show that if D is a simple region bounded by a piecewise smooth curve γ, traced counter clockwise, then the area of the interior of γ (i.e. the area of D) is given by

$$
A(D)=\frac{1}{2} \oint_{\gamma}-y d x+x d y
$$

Now that we know about curl and div we can use them to re-write the Green's Theorem result. Note that the integrand in the area integral in Green's Theorem is the non-zero component in $\vec{\nabla} \times \vec{F}$ where $\vec{F}(x, y)=(F(x, y), G(x, y), 0)$

THEOREM: Stokes' Theorem in the Plane

So, in vector format, we can write Green's Theorem as

$$
\iint_{D}(\vec{\nabla} \times \vec{F}) \cdot \hat{k} d A=\oint_{\partial D} \vec{F} \cdot d \vec{x}
$$

This result is known as Stokes' Theorem in the Plane. Note that $d \vec{x}=\hat{t} d s$ where s is a parameter representing arc length along the curve γ (not important) in a direction \hat{t} always tangent to the curve.
In Stokes' Theorem we are dealing with a vector field in \mathbb{R}^{2} which has the form $\vec{F}=$ $(F(x, y), G(x, y))$. In Gauss' Theorem we are dealing with a vector field which has the form $\vec{H}=(-G(x, y), F(x, y))$
Suppose we had a unit vector \hat{n} which is orthogonal in the plane (i.e. normal) to the curve γ at every point. This means that \hat{n} is at 90 degrees (orthogonal) to the tangent vector \hat{t} and points away from the interior of a closed region D where γ is a path which makes up the boundary of D. Mathematically, then $\hat{n} \cdot \hat{t}=0$.
We can show that $\vec{H} \cdot d \vec{x}=\vec{F} \cdot \hat{n} d s$. (Please note that $d \vec{x}=(d x, d y)$ and $d s \hat{n}=(-d y, d x)$ so that $(d s)^{2}=(d x)^{2}+(d y)^{2}=|d \vec{x}|^{2}$. Can you visualize this?)
Since $\vec{H} \cdot d \vec{x}=(-G, F) \cdot(d x, d y)=-G d x+F d y=(F, G) \cdot(d y,-d x)=\vec{F} \cdot \hat{n} d s$
But using Green's Theorem on $\vec{H}=(-G(x, y), F(x, y))$ and recalling $\vec{F}=(F(x, y), G(x, y))$ produces

$$
\begin{aligned}
\int_{\gamma} \vec{H} \cdot d \vec{x}=\int_{\gamma}-G(x, y) d x+F(x, y) d y & =\iint_{D}\left(\frac{\partial}{\partial x}[F(x, y)]-\frac{\partial}{\partial y}[-G(x, y)]\right) d A \\
\int_{\gamma} \vec{F} \cdot \hat{n} d s & =\iint_{D}\left(\frac{\partial F}{\partial x}+\frac{\partial G}{\partial y}\right) d A
\end{aligned}
$$

But the right hand side of this expression should remind you of the divergence operator. So we can also re-write Gauss' theorem using another differential vector operator, this time $\operatorname{div} \vec{F}$

THEOREM: Gauss' Theorem in the Plane

$$
\iint_{D} \vec{\nabla} \cdot \vec{F} d A=\int_{\partial D} \vec{F} \cdot \hat{n} d s
$$

$$
\iint_{\partial D} \vec{F} \cdot d \vec{A}=\iiint_{D} \vec{\nabla} \cdot \vec{F} d V
$$

The divergence theorem is the most general form or the Gauss' Theorem, equating the integral of the divergence of a vector field $\vec{F}(\vec{x})$ through a volume of space D to the surface area integral over the boundary of the region, called ∂D.

EXAMPLE 1
Willliamson \& Trotter, Page 408, \# 9. Evaluate $\int_{C}\left(x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ where C is the circle of radius 1 centered at the origin and traced clockwise.

Exercise 1

Willliamson \& Trotter, Page 408, \# 12. Let f be a real valued function with continuous second order derivatives in an open set D in \mathbb{R}^{2}. Let \vec{F} a vector field defined in D by $\vec{F}=\vec{\nabla} f(\vec{x})$. Show that if $\vec{F}=(F(\vec{x}), G(\vec{x}))$, then the equation $\frac{\partial G}{\partial x}-\frac{\partial F}{\partial y}=0$ at all points in region D.

