Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 2\%: Monday April 17

SUMMARY Introduction to Path Integrals
CURRENT READING Williamson \& Trotter, $\S 8.1$
HOMEWORK Williamson \& Trotter, page 376: 1, 2,8,9,14 Extra Credit page 376:
19 AND page 376-377: $22,25,28,29,30$ Extra Credit page 376: 33

DEFINITION: path integral

Given a vector function $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a path or curve γ in space given by $\vec{g}(t): \mathbb{R} \rightarrow \mathbb{R}^{n}$ the path integral of \vec{f} over γ is given by $\int_{a}^{b} \vec{f}(\vec{g}(t)) \cdot \frac{d \vec{g}}{d t} d t=\int_{\gamma} \vec{f} \cdot d \vec{x}$

EXAMPLE 1

Williamson \& Trotter, page 371, example 4 Given the vector field $\vec{F}(\vec{x})=(x-y, y-$ $z, z-x)$ and the curve γ given $\vec{g}(t)=\left(t,-t, t^{2}\right)$ for $0 \leq t \leq 1$. Compute the line integral of \vec{F} over γ.

Exercise 1

Williamson \& Trotter, page 376, \#3. Compute $\int_{\gamma_{1}} x d y$ and compute $\int_{\gamma_{2}} x d y$ where γ_{1} is given by $\vec{g}(t)=(\cos t, \sin t)$ for $0 \leq t \leq 2 \pi$ and γ_{2} is given by $\vec{h}(t)=(\cos t, \sin t)$ for $0 \leq t \leq 4 \pi$.

Williamson \& Trotter, page 376, \#7. Compute $\int_{\gamma} \vec{F} \cdot d \vec{x}$ where $\vec{F}(\vec{x})=(z, x, y)$ and γ is given parametrically by $(x, y, z)=(\cos t, \sin t, t)$

THEOREM: Fundamental Theorem of Calculus

Given that f is a continuously differentiable real-valued function defined in an open subset D of \mathbb{R}^{n}. (Then we know $\vec{\nabla} f$ is a continuous vector field in D called a gradient field.) IF γ is a smooth curve in D with initial point \vec{a} and terminal point \vec{b} THEN $\int_{\gamma} \overrightarrow{\nabla f} \cdot d \vec{x}=f(\vec{b})-\vec{f}(\vec{a})$.
In other words, the line integral of a gradient field over a curve only depends on the value of the function at the endpoints of the curve. This also implies that in a gradient field if γ is any closed curve or loop (i.e. $\vec{a}=\vec{b}$), then the line integral over γ will be zero!

THEOREM: Fundamental Theorem of Calculus, part 2

Given a gradient field \vec{F}, the solution to the vector equation $\overrightarrow{\nabla f}=\vec{F}(\vec{x})$ is $f(\vec{x})=\int_{\vec{x}_{0}}^{\vec{x}} \vec{F}(\vec{t}) \cdot d \vec{t}$ with $f\left(\vec{x}_{0}\right)=0$.

This is an important idea in physics in that we are often looking for what is called a potential function $\phi(\vec{x})$ which describes the behavior of a known vector field \vec{F} such that $\vec{\nabla} \phi=\vec{F}$. EXAMPLE 2
Williamson \& Trotter, page 395, \#14. Define a vector field as $\vec{F}(\vec{x})=\vec{x}$ and parametrize the line segment γ joining \vec{a} and \vec{b} by $\vec{x}(t)=t \vec{b}+(1-t) \vec{a}$ with $0 \leq t \leq 1$.
(a) Show by direct computation that $\int_{\gamma} \vec{F} \cdot d \vec{x}=\frac{1}{2}\left(|\vec{b}|^{2}-|\vec{a}|^{2}\right)$
(b) Repeat the computation by finding a real-valued function f such that $\vec{\nabla} f=\vec{F}$ and applying the Fundamental Theorem of Calculus.

