Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 25: Wednesday April 12

SUMMARY Change of Variables Theorem
CURRENT READING Williamson \& Trotter, Section 7.4
HOMEWORK \#24 5,11,16,17,21,35,40,43,44,49 Extra Credit page page 365: 48, 50

Suppose we want to change variables from an integral defined over $T(R)$ over one that is defined over R where $\vec{x}=\vec{T}(\vec{u}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Jacobi's Theorem

Given $\vec{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuously differentiable transformation and R is a subset of \mathbb{R}^{n} having a boundary consisting of finitely many smooth sets. IF R and its boundary are contained in the domain of \vec{T} and that (i) \vec{T} is one-to-one on the interior of R and (ii) det $\left(\vec{T}_{\vec{u}}\right) \neq 0$ in the interior of R, THEN

$$
\int_{T(R)} f(\vec{x}) d V_{x}=\int_{R} f(\vec{T}(\vec{u}))\left|\operatorname{det}\left(\vec{T}_{\vec{u}}(\vec{u})\right)\right| d V_{u}
$$

or, using Leibnizian Notation where T maps from W^{*} in $u v w$-space to $W=T\left(W^{*}\right)$ in $x y z$-space
$\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w$ in \mathbb{R}^{3}
and

$$
\iint_{W} f(x, y) d x d y=\iint_{W^{*}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \text { in } \mathbb{R}^{2}
$$

Generally, we use this theorem to convert from Cartesian coordinates to polar, spherical, and cylindrical co-ordinates.

Change of Variables: Polar Coordinates

$$
\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Change of Variables: Cylindrical Coordinates

$$
\iint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z
$$

Change of Variables: Spherical Coordinates

$$
\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi) r^{2} \sin \phi d r d \theta d \phi
$$

EXAMPLE 1
Williamson \& Trotter, page 346, \#7. Compute $\int_{D} \cos \left(x^{2}+y^{2}\right) d x d y$ where D is the disk of radius $\sqrt{\pi / 2}$ centered at $(0,0)$.

Exercise 1
Williamson \& Trotter, page 346, \#12. Compute $\int_{C} z^{2} d x d y d z$ where C is the region in \mathbb{R}^{3} described by $1 \leq x^{2}+y^{2}+z^{2} \leq 4$

Paired GroupWork
Williamson \& Trotter, page 347, \#21. Consider the transformation T defined by $\left[\begin{array}{l}x \\ y\end{array}\right]=T\left[\begin{array}{l}u \\ v\end{array}\right]=\left[\begin{array}{c}u^{2}-v^{2} \\ 2 u v\end{array}\right]$. Let $R_{u v}$ be the region $1 \leq u^{2}+v^{2} \leq 4, u \geq 0, v \geq 0$.
(a). Sketch the image region $R_{x y}=T\left(R_{u v}\right)$. (b) Compute $\int_{R_{x y}} \frac{d x d y}{\sqrt{1+4 x+4 y}}$

