Multivariable Calculus

Math 212 Spring 2006 ©2006 Ron Buckmire Fowler 112 MWF 8:30pm - 9:25am http://faculty.oxy.edu/ron/math/212/06/

Class 24: Monday April 10

SUMMARY Multiple Integration

CURRENT READING Williamson & Trotter, Section 7.2

HOMEWORK #23 Williamson & Trotter, page 332: 1,2,9,11,13, Extra Credit page 333: 17

Definition

A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be **bounded on a set** B if there exists a real number K such that $|f(\vec{x})| \leq K$ for all \vec{x} in B.

Definition

Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined and bounded on a bounded subset B of the domain of f. Then we shall define $f_B(\vec{x}) = \begin{cases} f(\vec{x}), & \text{if } \vec{x} \text{ is in } B \\ 0, & \text{if } \vec{x} \text{ is NOT in } B \end{cases}$

Definition

The **content** V of a **coordinate rectangle** R is defined as the product $V(R) = \prod_{i=1}^{n} (b_i - a_i)$ where a coordinate rectangle is a subset of \mathbb{R}^n such that $a_i \leq x_i \leq b_i$ for i = 1, 2, ..., n. **Definition**

The Riemann integral of $f : \mathbb{R}^n \to \mathbb{R}$ over B is denoted as $\int_B f dV$ and is defined by

$$\lim_{m(G)\to 0} \sum_{i=1}^r f_B(\vec{x}_i) V(R_i) = \int_B f dV$$

In the above definition m(G) is a mesh with grids G covering the set B and \vec{x}_i is a random point on one of r coordinate rectangles R_i with content $V(R_i)$ on the grids G. The point is that as the grids are defined so that the mesh becomes finer and finer (i.e. one approximates the set B with rectangles with smaller and smaller content $V(R_i)$) then in the limit this sum reaches a number, this number is the Riemann integral of f over B.

THEOREM

Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined and bounded on a bounded set B such that (i) the boundary of B has zero content and (ii) f is continuous except possibly on a set of zero content. THEN f is Riemann integrable over B.

Notation

Depending on whether \vec{x} is in \mathbb{R}^2 or \mathbb{R}^3 the integral of $f(\vec{x})$ over $B \subset \mathbb{R}^n$ can be denoted $\int_B f \, dV$ or $\int_B f \, dx \, dy \, dz$ in \mathbb{R}^3 or $\int \int_B \int f \, dx \, dy \, dz$ in \mathbb{R}^3 $\int_B f dA$ or $\int_B f \, dx \, dy$ in \mathbb{R}^2 or $\int_B \int f \, dx \, dy \, dz$ in \mathbb{R}^3

EXAMPLE 1

Williamson & Trotter, page 332, # 8. Find the volume under the graph of f and above the set B where f(x, y) = x + y + 2 and B is the region bounded by the curves $y^2 = x$ and x = 2

Exercise 1

Williamson & Trotter, page 332, # 14. Write an expression for the volume of the ball $x^2 + y^2 + z^2 \le a^2$ (a) as a triple integral and (b) as a double integral

THEOREMS Linearity: $\int_{B} af(\vec{x}) + cg(\vec{x}) \, dV = a \int_{B} f(\vec{x}) \, dV + c \int_{B} g(\vec{x}) \, dV$ Positivity: If $f \ge 0$ and integrable over B then $\int_{B} f \, dV \ge 0$ Union: $\int_{B_1 \cup B_2} f \, dV = \int_{B_1} f \, dV + \int_{B_2} f \, dV$

Leibniz Rule If $\partial g/\partial y$ is continuous for $a \leq x \leq b$ and $c \leq y \leq d$ then

$$\frac{d}{dy} \int_{a}^{b} g(x, y) \, dx = \int_{a}^{b} \frac{\partial g}{\partial y}(x, y) \, dx$$

Exercise 2

Williamson & Trotter, page 337, # 10. Find g'(t) where $g(t) = \int_1^2 \frac{1}{x} e^{tx} dx$.

GROUPWORK

Williamson & Trotter, page 364, # 14. Evaluate $\int_S x^2 y^2 dx dy$ where S is the square $|x| + |y| \le 1$.