Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 24: Monday April 10

SUMMARY Multiple Integration
CURRENT READING Williamson \& Trotter, Section 7.2
HOMEWORK \#23 Williamson \& Trotter, page 332: 1,2,9,11,13, Extra Credit page 333: 17

Definition

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be bounded on a set B if there exists a real number K such that $|f(\vec{x})| \leq K$ for all \vec{x} in B.

Definition

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined and bounded on a bounded subset B of the domain of f. Then we shall define $f_{B}(\vec{x})= \begin{cases}f(\vec{x}), & \text { if } \vec{x} \text { is in } B \\ 0, & \text { if } \vec{x} \text { is NOT in } B\end{cases}$

Definition

The content V of a coordinate rectangle R is defined as the product $V(R)=\Pi_{i=1}^{n}\left(b_{i}-a_{i}\right)$ where a coordinate rectangle is a subset of \mathbb{R}^{n} such that $a_{i} \leq x_{i} \leq b_{i}$ for $i=1,2, \ldots, n$.

Definition

The Riemann integral of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ over B is denoted as $\int_{B} f d V$ and is defined by

$$
\lim _{m(G) \rightarrow 0} \sum_{i=1}^{r} f_{B}\left(\vec{x}_{i}\right) V\left(R_{i}\right)=\int_{B} f d V
$$

In the above definition $m(G)$ is a mesh with grids G covering the set B and \vec{x}_{i} is a random point on one of r coordinate rectangles R_{i} with content $V\left(R_{i}\right)$ on the grids G. The point is that as the grids are defined so that the mesh becomes finer and finer (i.e. one approximates the set B with rectangles with smaller and smaller content $\left.V\left(R_{i}\right)\right)$ then in the limit this sum reaches a number, this number is the Riemann integral of f over B.
THEOREM
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined and bounded on a bounded set B such that (i) the boundary of B has zero content and (ii) f is continuous except possibly on a set of zero content. THEN f is Riemann integrable over B.
Notation
Depending on whether \vec{x} is in \mathbb{R}^{2} or \mathbb{R}^{3} the integral of $f(\vec{x})$ over $B \subset \mathbb{R}^{n}$ can be denoted $\int_{B} f d V$ or $\int_{B} f d x d y d z$ in \mathbb{R}^{3} or $\iint_{B} \int f d x d y d z$ in \mathbb{R}^{3}
$\int_{B}^{B} f d A$ or $\int_{B}^{B} f d x d y$ in \mathbb{R}^{2} or $\int_{B} \int f d x d y d z$ in \mathbb{R}^{3}

EXAMPLE 1
Williamson \& Trotter, page 332, \# 8. Find the volume under the graph of f and above the set B where $f(x, y)=x+y+2$ and B is the region bounded by the curves $y^{2}=x$ and $x=2$

Exercise 1

Williamson \& Trotter, page 332, \# 14. Write an expression for the volume of the ball $x^{2}+y^{2}+z^{2} \leq a^{2}(\mathbf{a})$ as a triple integral and (b) as a double integral

THEOREMS
Linearity: $\int_{B} a f(\vec{x})+c g(\vec{x}) d V=a \int_{B} f(\vec{x}) d V+c \int_{B} g(\vec{x}) d V$
Positivity: If $f \geq 0$ and integrable over B then $\int_{B} f d V \geq 0$
Union: $\int_{B_{1} \cup B_{2}} f d V=\int_{B_{1}} f d V+\int_{B_{2}} f d V$
Leibniz Rule If $\partial g / \partial y$ is continuous for $a \leq x \leq b$ and $c \leq y \leq d$ then

$$
\frac{d}{d y} \int_{a}^{b} g(x, y) d x=\int_{a}^{b} \frac{\partial g}{\partial y}(x, y) d x
$$

Exercise 2

Williamson \& Trotter, page 337, \# 10. Find $g^{\prime}(t)$ where $g(t)=\int_{1}^{2} \frac{1}{x} e^{t x} d x$.

GROUPWORK

Williamson \& Trotter, page 364, \# 14. Evaluate $\int_{S} x^{2} y^{2} d x d y$ where S is the square $|x|+|y| \leq 1$.

