Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 19: Wednesday March 22

SUMMARY Implicit Differentiation
CURRENT READING Williamson \& Trotter, Section 6.3
HOMEWORK Williamson \& Trotter, page 274: 2, 3; page 281: 2, 3, 4, 5, 7, 12, 15

THEOREM: The Inverse Function Theorem or I.F.T.

Let $\vec{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be continuously differentiable on an open subset S of \mathbb{R}^{n} and let \vec{x}_{0} be a point in S with invertible derivative matrix (Jacobian) \vec{F}^{\prime}. THEN there is a neighborhood N of \vec{x}_{0} such that \vec{F} has a continuously differentiable inverse function $(\vec{F})^{-1}$ defined on the image set $\vec{F}(N)$. The derivative matrix (Jacobian) of \vec{F}^{-1} is related to the Jacobian matrix of \vec{F} by the equation

$$
\left[\vec{F}^{-1}\right]^{\prime}(\vec{F}(\vec{x}))=\left[\vec{F}^{\prime}(\vec{x})\right]^{-1}
$$

You should read this as the derivative of the inverse function of \vec{F} evaluated at \vec{F} is equal to the inverse of the derivative of the function \vec{F} evaluated at \vec{x}.

This is the multivariable version of the common result from Calculus you may recall that given $f(a)=b$ and $a=g(b)$ so that g is the inverse function of f, then $g^{\prime}(f(a))=g^{\prime}(b)=\frac{1}{f^{\prime}(a)}$
If we think of these objects as vectors we can let $\vec{g}=\vec{f}^{-1}$ and $\vec{a}=\vec{g}(\vec{b}) \leftrightarrow \vec{b}=\vec{f}(\vec{a})$ then we can re-write the I.F.T. as $\mathbf{g}^{\prime}(\vec{b})=\left[\mathbf{f}^{\prime}(\vec{a})\right]^{-1}$ where $\mathbf{g}=\vec{g}$ and $\mathbf{f}=\vec{f}$.

Exercise 1

$f(x)=e^{x}$ and $g(x)=\ln (x)$ then f and g are inverse functions of each other. Let $a=1$ and $b=f(a)=e^{1}=e$. Compute $g^{\prime}(e)$ using the Inverse Function Theorem (i.e. without differentiating $g(x)$)

The main usefulness of the Inverse Function Theorem is when one is doing a coordinate transformation. This will be extremely more important when we look at Multivaiable Integration later on.

EXAMPLE 1
Williamson \& Trotter, page 274, \#10. Define $P: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the equations $x=u \cos v, y=u \sin v$ for $u>0$.
(a) Show that for fixed $v=v_{0}$ and varying $u>0$ the image curves in the $x y$-plane are half-lines emanating from $(x, y)=(0,0)$. (QUESTION: What do the pre-image curves look like in the $u v$-plane?)
(b) Show that for fixed $u=u_{0}$ and varying v the image curves in the $x y$-plane are circles of radius u_{0} each one traced infinitely often. (QUESTION: What do the pre-image curves look like in the $u v$-plane?)
(c) Compute the determinant of the jacobian matrix $P^{\prime}(u, v)$, sometimes denoted $\frac{\partial(x, y)}{\partial(u, v)}$, and show that if $u_{0} \neq 0$ then the inverse function theorem implies the existence of a local inverse in the neighborhood of $\left(x_{0}, y_{0}\right)=P\left(u_{0}, v_{0}\right)$.

Implicit Differentiation

Recall that even though one does not always have an explicit definition of a curve $y=f(x)$ one can still compute the slope of such a curve using a process called implicit differentiation. The curve is defined implicitly as $F(x, y)=c$.

Using the Chain Rule this equation becomes $\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0$ when when solved implies that

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}=-\left(F_{y}\right)^{-1} F_{x}
$$

EXAMPLE 2
Show that the implicitly-defined curve $y^{3}-x y=-6$ has no points on it where a tangent line would have zero slope.

Exercise 2

The equation $F(x, y)=x^{2}+y^{2}-4=0$ defines a circle of of radius 2 centered at the origin. What's the slope of this curve at $(1, \sqrt{3})$? What's the slope at $(2,2)$?

Are there any points on this curve where the slope of this curve has a horizontal tangent line?

Are there any points on this curve where the slope of this curve has a vertical tangent line?

THEOREM: The Implicit Function Theorem

Let $F: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{m}$ be a continuously differentiable function. Suppose for some \vec{x}_{0} in \mathbb{R}^{n} and some \vec{y}_{0} in \mathbb{R}^{m} that
(i) $\vec{F}\left(\vec{x}_{0}, \vec{y}_{0}\right)=\overrightarrow{0}$ and
(ii) $\vec{F}_{\vec{y}}\left(\vec{x}_{0}, \vec{y}_{0}\right)$ is an m-by- m invertible matrix.

THEN there is a unique continuously differentiable function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ defined on an open neighborhood N of \vec{x}_{0} in \mathbb{R}^{n} such that $\vec{F}(\vec{x}, \vec{G}(\vec{x}))=\overrightarrow{0}$ for all \vec{x} in N and $\vec{G}\left(\vec{x}_{0}\right)=\vec{y}_{0}$.

Theorem

Suppose $F: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{m}$ and $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are differentiable and that $\vec{y}=\vec{G}(\vec{x})$ satisfies $\vec{F}(\vec{x}, \vec{y})=\overrightarrow{0}$ for all \vec{x} in some open subset of \mathbb{R}^{n}. THEN

$$
\vec{G}^{\prime}(\vec{x})=-\left[\vec{F}_{\vec{y}}\right]^{-1}(\vec{x}, \vec{G}(\vec{x})) \vec{F}_{\vec{x}}(\vec{x}, \vec{G}(\vec{x}))
$$

This is the multi-dimensional version of finding the slope of an implicitly-defined curve $y(x)$ which satisfies $f(x, y)=c$, i.e. implicit differentiation. In multi-dimensions we're trying to find an $m \times n$ derivative matrix corresponding to the "rate of change" of an implicitly defined m-component vector function of an n-component input variable. Do you see how this compares to the expression for $\frac{d y}{d x}$ of an implicitly defined curve $F(x, y)=c$ on Page 2?

Exercise 3

Williamson \& Trotter, page 281, \#8. If $x+y-u-v=0$ and $x-y+2 u+v=0$. Find $\partial x / \partial u, \partial y / \partial u, \partial x / \partial v$ and $\partial y / \partial v$ by (1) solving for x and y in terms of u and v and (2) by implicit differentiation.

EXAMPLE 3

Consider Williamson \& Trotter, page 281, \#7. Suppose $x^{2} y+y z=0$ and $x y z+1=0$. (a) Find $d x / d z$ and $d y / d z$ at $(x, y, z)=(1,1,-1)$. (b) Find $d y / d x$ and $d z / d x$ at $(x, y, z)=$ $(1,1,-1)$. (c) Find $d x / d y$ and $d z / d y$ at $(x, y, z)=(1,1,-1)$.

