Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 16: Wednesday March 1

SUMMARY Multivariable Newton's Method
CURRENT READING Williamson \& Trotter, Section (Section 5.5)
HOMEWORK Williamson \& Trotter, page 250: 1,4;
Many engineering problems can be represented mathematically as either $A \vec{x}=\vec{b}$ or $\vec{f}(\vec{x}=\overrightarrow{0}$. There are even simple applications which end up involving the solution of $f(x)=0$.
Newton's Method
Recall that Newton's Method is an algorithm for producing a sequence of approximations whose limit is the root of a function $f(x)$.

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad x_{0} \text { given }
$$

Newton's Method is derived from re-arranging the equation of the tangent line to $f(x)$ at the point x_{n}.
EXAMPLE
Show that the Babylonian Algorithm $x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{A}{x_{n}}\right)$ results from applying Newton's Method to find the root of $f(x)=x^{2}-A$. Set $A=5$ and $x_{0}=1$. Produce the sequence of approximations to $\sqrt{5}$.

The derivation of the Multivariable Newton's Method is very similar to the scalar version. The equation of the tangent approximation to the vector function of a vector variable $\vec{f}(\vec{x})$ is

$$
\vec{T}(\vec{x})=\vec{f}\left(\vec{x}_{0}\right)+J\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)
$$

Let \vec{x}_{1} have the property that $\vec{T}\left(\vec{x}_{1}\right)=\overrightarrow{0}$ and then solve for \vec{x}_{1} to produce the result:

Multivariable Newton's Method

$$
\vec{x}_{n+1}=\vec{x}_{n}-\left[J\left(\vec{x}_{n}\right)\right]^{-1} \vec{f}\left(\vec{x}_{n}\right), \quad \vec{x}_{0} \text { given }
$$

EXERCISE

Williamson \& Trotter, page 250, \#6. Let $\vec{g}(u, v)=\left[\begin{array}{c}u^{2}+u v^{2} \\ u+v^{3}\end{array}\right]$. Note that $\vec{g}(1,1)=$ $(2,2)$. Use Newton's Method to approximate a solution to $\vec{g}(u, v)=(1.9,2.1)$

Very often the Jacobian is only computed once (since it's a computationally expensive operation) and then NOT UPDATED for subsequent iterations. This kind of method is called a quasi-Newton Method.

