Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 14: Friday February 24

SUMMARY The Jacobian Matrix
CURRENT READING Williamson \& Trotter, Section (Section 5.4)
HOMEWORK Williamson \& Trotter, page 236: \# 1, 4, 9; page 243: 3, 4, 8, 17, 18, $\mathbf{2 3}$
Extra Credit page 244: 27, 28

Definition: jacobian

The derivative matrix (usually called the jacobian) of a vector function $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the matrix consisting of the n partial derivatives of each of the m co-ordinate functions arranged so that the rows of the matrix are exactly gradient vectors of each coordinate function. The Jacobian has $m n$ entries where $J_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}$. In other words,

$$
J(\vec{x})=\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

(NOTE on NOTATION: To denote the Jacobian, we may use $\vec{f}_{\vec{x}}$ or $\overrightarrow{f^{\prime}}$ or $\frac{\partial \vec{f}}{\partial \vec{x}}$ or simply J.)

EXAMPLE 1

Williamson \& Trotter, page 243, \#1. Find the "derivative matrix" $\overrightarrow{f^{\prime}}$ at a general point of the domain of the function f from \mathbb{R}^{n} to \mathbb{R}^{m} where $f(x, y)=(x y, x+y)$

Exercise

Williamson \& Trotter, page 243, \#2. Find the "derivative matrix" $\overrightarrow{f^{\prime}}$ at a general point of the domain of the function f from \mathbb{R}^{n} to \mathbb{R}^{m} where $f(r, \theta)=(r \cos (\theta), r \sin (\theta))$

First Degree Taylor Approximations For Different Types of Functions
We know that for a scalar function of a scalar variable $(f: \mathbb{R} \rightarrow \mathbb{R})$ one can approximate the function $f(x)$ near x_{0} with the equation of the tangent line:

$$
T(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

For a scalar function of a vector variable $\left(f: \mathbb{R}^{m} \rightarrow \mathbb{R}\right)$ the tangent approximation becomes

$$
T(\vec{x})=f\left(\vec{x}_{0}\right)+\vec{\nabla} f\left(\vec{x}_{0}\right) \cdot\left(\vec{x}-\vec{x}_{0}\right)
$$

For a vector function of a scalar variable $\left(f: \mathbb{R} \rightarrow \mathbb{R}^{n}\right)$ the tangent approximation is

$$
\vec{T}(t)=\vec{f}\left(t_{0}\right)+\frac{d \vec{f}}{d t}\left(t_{0}\right)\left(t-t_{0}\right)
$$

For a vector function of a vector variable $\left(f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\right)$ the tangent approximation is

$$
\vec{T}(\vec{x})=\vec{f}\left(\vec{x}_{0}\right)+\vec{f}_{\vec{x}}\left(\vec{x}_{0}\right)\left(\vec{x}-\vec{x}_{0}\right)
$$

GROUPWORK

Write down YOUR OWN FOUR DIFFERENT examples of the four different types of function and take their "effective derivative" in each case. Compare your examples with your nearest neighbors.

EXAMPLE 2

Williamson \& Trotter, page 243, \#25. Consider the function from Example 1 (i.e. $\vec{f}(x, y)=(x y, x+y)$ with $\vec{x}_{0}=(1,0), \Delta \vec{x}_{1}=(0.1,0), \Delta \vec{x}_{2}=(0,0.1)$ and $\Delta \vec{x}_{3}=(0.1,0.1)$
(a) Compute $\vec{f}\left(\vec{x}_{0}+\Delta \vec{x}_{i}\right)$ for $i=1,2,3$
(b) Find the tangent approximation to $\vec{f}\left(\vec{x}_{0}+\Delta \vec{x}\right)$
(c) Use the tangent approximation from (b) to approximate the vectors $\vec{f}\left(\vec{x}_{0}+\Delta \vec{x}_{i}\right)$ for $i=1,2,3$

