Multivariable Calculus

Math 212 Spring 2006 ©2006 Ron Buckmire Fowler 112 MWF 8:30pm - 9:25am http://faculty.oxy.edu/ron/math/212/06/

Class 13: Wednesday February 22

SUMMARY Differentiability of a Vector Function of a Vector Variable: The Gradient CURRENT READING Williamson & Trotter, Section (Section 5.2, 5.3)
HOMEWORK Williamson & Trotter, page 232: 6, 7, 8, 9, 12, 16, 19, 20;
Extra Credit page 232: # 21

Recall that the definition of a derivative $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A \text{ and } \lim_{x \to x_0} \frac{f(x) - f(x_0) - A(x - x_0)}{x - x_0} = 0 \text{ where } f'(x_0) = A.$

DEFINITION: differentiable

Consider a function $f : \mathbb{R}^n \to \mathbb{R}$. f is **differentiable** at \vec{x}_0 if \vec{x}_0 is an interior point of the domain of f and there exists a vector \vec{a} such that

$$\lim_{\vec{x} \to \vec{x}_0} \frac{f(\vec{x}) - f(\vec{x}_0) - \vec{a} \cdot (\vec{x} - \vec{x}_0)}{|\vec{x} - \vec{x}_0|} = 0$$

The vector \vec{a} is called the **gradient** of the differentiable function $\vec{f}(\vec{x})$ at \vec{x}_0 and is denoted $\vec{\nabla} f$ which is pronounced "del f" or "grad f."

DEFINITION:

If a function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at \vec{x}_0 then the k^{th} coordinate of the gradient $\vec{\nabla} f(\vec{x}_0)$ is the k^{th} partial derivative of f at \vec{x}_0 , for $k = 1, 2, \ldots, n$.

$$\vec{\nabla} f(\vec{x}_0) = (f_{x_1}, f_{x_2}, f_{x_3}, \dots, f_{x_n})$$

Theorem

Let the domain of $f : \mathbb{R}^n \to \mathbb{R}$ be an open subset D of \mathbb{R}^n for which all partial derivatives of $\frac{\partial f}{\partial x_i}$ are continuous. Then f is differentiable at every point of D.

Compute $\vec{\nabla} f$ for $f(x, y) = xy^2 z^3$.

Theorem: Differentiability Implies Continuity

If a function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point \vec{x}_0 of its domain, then f is continuous at \vec{x}_0 .

Tangent Approximation

For a function $f : \mathbb{R} \to \mathbb{R}$ we know that the tangent approximation is

$$T(x) = f(x_0) + f'(x_0)(x - x_0)$$

This is the first degree Taylor Polynomial approximation. For a function $f : \mathbb{R}^n \to \mathbb{R}$ we can write the Tangent Approximation as

$$T(\vec{x}) = f(\vec{x}_0) + \nabla f(\vec{x}_0) \cdot (\vec{x} - \vec{x}_0)$$

EXAMPLE

Lets find the tangent approximation to the surface $z = f(x, y) = 1 - 2x^2 - y^2$ at (1/2, 1/2).

EXERCISE

Williamson & Trotter, page 232, #12. Find the tangent approximation $T(\vec{x})$ to the function f(x, y, z) = (x - y)z at (1, 0, 1).

DEFINITION

For a function $f: \mathbb{R}^n \to \mathbb{R}$ and a direction \vec{v} the **directional derivative** is defined as

$$\frac{\partial f}{\partial \vec{v}} = \lim_{t \to 0} \frac{f(\vec{x} + t\vec{v}) - f(\vec{x})}{t} = \vec{\nabla} f(\vec{x}) \cdot \vec{v}$$

NOTE: that if the direction $\vec{v} = \hat{e}_k$ then the directional derivative in that direction (i.e. parallel to the x_k axis) is simply the partial derivative with respect to x_k .

$$\frac{\partial f}{\partial \hat{e}_k} = \vec{\nabla} f(\vec{x}) \cdot \hat{e}_k = \frac{\partial f}{\partial x_k}$$

EXERCISE

Williamson & Trotter, page 262, #6. Find the directional derivative at $\vec{x} = (1,0)$ in the direction $\vec{v} = (\cos(\alpha), \sin(\alpha))$ of $f(x, y) = e^x \sin(y)$.