Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 11: Wednesday February 15

SUMMARY Application of Partial Derivatives: Vector Partial Derivatives and Quadric Surfaces
CURRENT READING Williamson \& Trotter, Section (Section 4.3)
HOMEWORK Williamson \& Trotter, page 210: \# 4, 11, 17, 18, 23; page 214: 3, 17, 21, 24

DEFINITION

A vector function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of a vector variable, $\vec{f}(\vec{x})$, has a vector partial derivative given by

$$
\frac{\partial \vec{f}}{\partial x_{i}}=\left(\frac{\partial f_{1}}{\partial x_{i}}, \frac{\partial f_{2}}{\partial x_{i}}, \ldots, \frac{\partial f_{m}}{\partial x_{i}}\right)
$$

EXAMPLE 1

Williamson \& Trotter, page 210, \#1. Find formulas for the vector partial derivative of the function $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ where $\vec{f}(x, y)=\left[\begin{array}{c}x+y \\ x-y \\ x^{2}+y^{2}\end{array}\right]$

Graphical Interpretation of Vector Partial Derivative

If you think about a vector function of a vector variable only varying with respect to one variable while the rest of the variables are held constant then you could reframe this as a vector function of that one scalar variable, and its image would trace out a coordinate curve in \mathbb{R}^{m}. The vector partial derivative $\frac{\partial \vec{f}}{\partial x_{i}}$ then is exactly the same thing as the tangent vector to this coordinate curve.

Parametrized Surfaces

A curved surface $z=f(x, y)$ in \mathbb{R}^{3} can be represented in a parametrized way as $\vec{x}(u, v)=$ $\vec{f}(u, v)$ where $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. This is the multi-dimensional equivalent to the way a curve in \mathbb{R}^{2} can be represented parametrically by $\vec{x}(t)=\vec{f}(t)$ where $\vec{f}: \mathbb{R} \rightarrow \mathbb{R}^{2}$.

Quadric Surfaces

Quadric Surfaces are level sets in \mathbb{R}^{3} of second degree polynomials in three variables. In other words they have the form $A x^{2}+B y^{2}+C z^{2}+D=0$. There are six different distinct types of quadric surfaces, all of which are displayed on page 196 of Williamson \& Trotter. There's a great interactive web resource called the "Interactive Gallery of Quadric Surfaces." GROUPWORK
Use the space on the right to describe the following curves by acessing the Interactive Gallery of Quadric Surfaces to assist you in visualizing these objects.
hyperboloid of one sheet $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z^{2}=k>0$
hyperboloid of two sheets $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z^{2}=k<0$
elliptic cone $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z^{2}=0$
ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
elliptic paraboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z=0$
hyperbolic paraboloid $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-z=0$

EXAMPLE 1

Show that an elliptic cone can be represented parametrically by $\vec{x}(u, v)=\left[\begin{array}{c}a u \cos v \\ b u \sin v \\ u\end{array}\right]$

When a surface is represented parametrically, the tangent plane can be represented as

$$
\vec{x}=u \frac{\partial \vec{x}}{\partial u}\left(u_{0}, v_{0}\right)+v \frac{\partial \vec{x}}{\partial v}\left(u_{0}, v_{0}\right)+\vec{x}\left(u_{0}, v_{0}\right)
$$

Exercise

Show that the parametrized surface $\vec{x}=\left[\begin{array}{c}2 \cos u \cos v \\ 3 \sin u \cos v \\ 5 \sin v\end{array}\right]$ represents the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{25}=1$ and find the parametrized equation of the tangent plane at $\vec{x}(0,0)$.

