Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 10: Monday February 13

SUMMARY Partial Derivatives
CURRENT READING Williamson \& Trotter, Section 4.3
HOMEWORK Williamson \& Trotter, page 203: 3, 9, 12, 22, 25, 31, 34, 37;
Extra Credit page 204: \# 38, 39

DEFINITION

The partial derivative of a scalar function of a vector variable $f(\vec{x})$ where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be defined as

$$
\frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, x_{2}, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{h}
$$

In practice, this basically means that if you have a function of many variables when you take a partial derivative with respect to a particular variable you treat all the other variables in the function as CONSTANTS.
NOTE: Sometimes $\frac{\partial f}{\partial x}$ will be denoted simply f_{x}.
EXAMPLE 1
Consider $f(x, y, z)=x y z+\sin (x+y)+z^{2} y+e^{-x}$ and calculate f_{x}, f_{y} and f_{z}

Exercise 1

Find $\frac{\partial^{3} f}{\partial x^{2} \partial y}$ (also known as $\left.f_{x x y}\right)$ if $f(x, y)=\ln (2 x+3 y)$

Equation of a Tangent Plane to a Surface
The equation of a tangent plane to a surface $z=f(x, y)$ at the point $(a, b, f(a, b))$ is given by the equation

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Exercise 2

Williamson \& Trotter, page 204, page 10. Find the equation of the tangent plane to $f(x, y)=x\left(y^{2}+1\right)$ at $(a, b)=(0,2)$.

Graphical Interpretation of Tangent Plane

The notion of the existence of a tangent plane to a surface is the 3-dimension equivalent to the existence of a tangent line or local linearity of a curve in 2-dimensions. The existence of these objects relate to the differentiability of the scalar function $f(\vec{x})$, and differentiability of a function at a point implies continuity at that point, but continuity DOES NOT imply differentiability.

Connection to Taylor's Theorem and Miscroscope Approximation
We can approximate a function $f(x, y)$ near the point $\left(x_{0}, y_{0}\right)$ with its tangent plane:
$f(x, y) \approx f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$
EXAMPLE 2
Approximate the value of $f(0.97,2.01)$ where $f(x, y)=\sqrt{x^{2}+y^{3}}$.

Clairault's Theorem

If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous and $f_{x}, f_{y}, f_{x y}$ and $f_{y x}$ are also continuous on the same domain as f, then $f_{x y}=f_{y x}$. NOTE: $f_{x y}=\left(f_{x}\right)_{y}$.

Exercise 3

Show that Clairault's Theorem applies to the function $f(x, y)=x^{y}$ by proving $f_{x y}=f_{y x}=$ $(1+y \ln x) x^{y-1}$.

