Multivariable Calculus

Math 212 Spring 2006 ©2006 Ron Buckmire Fowler 112 MWF 8:30pm - 9:25am http://faculty.oxy.edu/ron/math/212/06/

Class 10: Monday February 13

SUMMARY Partial Derivatives
CURRENT READING Williamson & Trotter, Section 4.3
HOMEWORK Williamson & Trotter, page 203: 3, 9, 12, 22, 25, 31, 34, 37;
Extra Credit page 204: # 38, 39

DEFINITION

The **partial derivative** of a scalar function of a vector variable $f(\vec{x})$ where $f : \mathbb{R}^n \to \mathbb{R}$ can be defined as

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, x_2, x_i + h, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{h}$$

In practice, this basically means that if you have a function of many variables when you take a partial derivative with respect to a particular variable you treat all the other variables in the function as CONSTANTS.

the function as CONSTANTS. **NOTE:** Sometimes $\frac{\partial f}{\partial x}$ will be denoted simply f_x .

EXAMPLE 1 Consider $f(x, y, z) = xyz + \sin(x + y) + z^2y + e^{-x}$ and calculate f_x , f_y and f_z

Exercise 1 Find $\frac{\partial^3 f}{\partial x^2 \partial y}$ (also known as f_{xxy}) if $f(x, y) = \ln(2x + 3y)$

Equation of a Tangent Plane to a Surface

The equation of a tangent plane to a surface z = f(x, y) at the point (a, b, f(a, b)) is given by the equation

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Exercise 2

Williamson & Trotter, page 204, page 10. Find the equation of the tangent plane to $f(x, y) = x(y^2 + 1)$ at (a, b) = (0, 2).

Graphical Interpretation of Tangent Plane

The notion of the existence of a tangent plane to a surface is the 3-dimension equivalent to the existence of a tangent line or **local linearity** of a curve in 2-dimensions. The existence of these objects relate to the **differentiability** of the scalar function $f(\vec{x})$, and **differentiability** of a function at a point implies continuity at that point, but continuity DOES NOT imply differentiability.

Connection to Taylor's Theorem and Miscroscope Approximation

We can approximate a function f(x, y) near the point (x_0, y_0) with its tangent plane: $f(x, y) \approx f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$ EXAMPLE 2 Approximate the value of f(0.97, 2.01) where $f(x, y) = \sqrt{x^2 + y^3}$.

Clairault's Theorem

If $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous and f_x, f_y, f_{xy} and f_{yx} are also continuous on the same domain as f, then $f_{xy} = f_{yx}$. **NOTE**: $f_{xy} = (f_x)_y$.

Exercise 3

Show that Clairault's Theorem applies to the function $f(x, y) = x^y$ by proving $f_{xy} = f_{yx} = (1 + y \ln x)x^{y-1}$.