Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 7: Monday February 6

SUMMARY Review of Linear Systems, part 3: The Inverse Matrix and Determinants CURRENT READING Williamson \& Trotter, Section (Chapter 2)
HOMEWORK Williamson \& Trotter, page 86: 5, 8, 11, 26, 29 page 98: \# 1, 2, 3, 4, 21 Extra Credit page 99: \# 22, 40

The Determinant

The determinant of a (square) matrix is a real number associated with that matrix. It is denoted by $\operatorname{det}(A)$ or sometimes $|A|$ and should be considered a function which has a square $n \times n$ matrix as its input and a real number as its output.

The significance of the determinant is that $\operatorname{det}(A)=0 \Leftrightarrow$ the matrix is singular. Thus if you want to determine whether a linear system $A \vec{x}=\vec{b}$ has a unique solution all you need to do is find out whether the determinant of the coefficient matrix A is non-zero.

Unfortunately, computing the determinant of a matrix can be complicated. The most common method is to use the Co-Factor Method.

DEFINITION

Let A be any matrix. The $i j$-minor of A is the matrix obtained by removing its i th row and its j th column. It is denoted by $\hat{A}_{i, j} . \operatorname{det}(A)=\sum_{j=1}^{n} A_{i, j} C_{i, j}$ where $C_{i, j}=(-1)^{i+j} \operatorname{det}\left(\hat{A}_{i, j}\right)$. The coefficient $C_{i, j}$ defined above is called the cofactor of the entry $A_{i, j}$.
EXERCISE 1
Compute the determinant of $\left[\begin{array}{lll}2 & 6 & 2 \\ 0 & 4 & 2 \\ 5 & 9 & 0\end{array}\right]$

Properties of the Determinant

1. An elementary multiplication of a row of A by a scalar r gives $r \operatorname{det}(A)$
2. An elementary modification of A leaves $\operatorname{det}(A)$ unchanged.
3. Interchanging two rows of A changes the sign of $\operatorname{det}(A)$.

Cramer's Rule

Given $A \vec{x}=\vec{b}$, the j th coordinate of \vec{x} is given by the formula

$$
x_{j}=\frac{\operatorname{det}\left(B_{j}\right)}{\operatorname{det}(A)}
$$

where B_{j} is obtained by replacing the j-th column of A by \vec{b}.
EXAMPLE 1 Solve the system

$$
\begin{array}{r}
2 x+4 y=1 \\
x+3 y=2
\end{array}
$$

The Inverse Matrix

Given a square matrix A if there exist a square matrix B such that $A B=B A=I$ then the matrix B is called the inverse matrix and is denoted A^{-1}. $\operatorname{det}(A) \neq 0 \Leftrightarrow A^{-1}$ exists. When A^{-1} exists the matrix is called invertible.

The usefulness of knowing the inverse of a matrix is that it help you solve $A \vec{x}=\vec{b}$ by direct computation i.e. $\vec{x}=A^{-1} \vec{b}$. If A is invertible, then the only solution to the homogeneous system $A \vec{x}=\overrightarrow{0}$ is $\vec{x}=\overrightarrow{0}$.

Inverse of a Matrix Product

$(A B)^{-1}=B^{-1} A-1$ and $(A B C)^{-1}=C^{-1} B^{-1} A-1$

Gauss-Jordan Elimination

One way to compute the inverse of a matrix A is to apply Gaussian elimination to the augmented matrix consisting of $[A \mid I]$

EXAMPLE 2						
		2				$0 \quad 0$
	6	4			0	10
	9	7	1		0	01

EXERCISE 2

Use your knowledge of inverses to confirm that the inverse of the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

