Multivariable Calculus

Math 212 Spring 2006
(C) 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am
http://faculty.oxy.edu/ron/math/212/06/

Class 6: Friday February $\mathbf{3}$

SUMMARY Review of Linear Systems: Matrix Operations
CURRENT READING Williamson \& Trotter, Section 2.2, 2.3 and 2.4
HOMEWORK Williamson \& Trotter, page $51 \# 6,7,14,17,18$; page 69: \# 3, 11, 14;
page 73: 2, 11 ; page 80: 1,2,3,4,11,12,13,14, 46 Extra Credit page 81: 49

Matrix Multiplication

Properties of Matrix Multiplication
$(A+B) C=A C+B C$ (Right Distributive Law)
$C(A+B)=C A+C B$ (Left Distributive Law)
$(t A)(B)=t(A B)=A(t B)$ (Scalar Commutativity Law)
$A(B C)=(A B) C$ (Associative Law)
$\mathrm{A} B \neq B A$ (Matrix Multiplication is not necessarily Commutative)
Linearity of Matrix Multiplication
$A(s \vec{u}+t \vec{v})=s A \vec{u}+t A \vec{v}$

Theorem

Every solution of the linear system $A \vec{x}=\vec{b}$ has the form $\vec{x}=\vec{x}_{h}+\vec{x}_{p}$ where \vec{x}_{p} is a particular solution of the system and \vec{x}_{h} is a solution of the homogeneous equation $A \vec{x}=\overrightarrow{0}$

EXAMPLE 1

Give $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$. Find the solutions of $A \vec{x}_{h}=\overrightarrow{0}$ and $A \vec{x}_{p}=\left[\begin{array}{l}3 \\ 9\end{array}\right]$ and show that $\vec{x}=\vec{x}_{p}+\vec{x}_{h}$ is another solution of the non-homogeneous system.

Theorem

A homogeneous system $A \vec{x}=\overrightarrow{0}$ has infinitely many non-zero solutions if it has more variables than equations (i.e. $n>m$). It also has infinitely many non-zero solutions if the equivalent reduced system $R \vec{x}=\overrightarrow{0}$ has more variables than nontrivial equations.

DEFINITION

A reduced matrix \mathbf{R} can be derived from the coefficient matrix A by applying elementary row operations. A reduced matrix R has the properties: (i) that every column containing a leading entry or pivot is zero except for that element and (ii) every leading entry (or pivot) equals 1.

EXAMPLE 2

Which of the following matrices are in reduced form?
$A=\left[\begin{array}{ll}2 & 0 \\ 1 & 0\end{array}\right] B=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right] \quad C=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 2 & 0\end{array}\right] \quad D=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

DEFINITION

A subset of \mathbb{R}^{n} is called a k-plane if it consists of all points $\vec{x}=t_{1} \vec{u}_{1}+t_{2} \vec{u}_{2}+\ldots+t_{k} \vec{u}_{k}+\vec{v}$ where \vec{v} is a fixed vector and the vectors \vec{v}_{i} are linearly independent fixed vectors and t_{i} are real parametric variables. A hyperplane is another name for a $(n-1)$-plane, i.e. the solution set of a single linear equation in \mathbb{R}^{n}.
EXAMPLE 3
Williamson \& Trotter, page 73, \#1. Solve the equation $w+3 x-2 y+z=3$ by expressing the solutions as a 3 -plane in \mathbb{R}^{4}.

EXERCISE 1

Williamson \& Trotter, page 73, \#10. Show that the follwing system's solution form a line or 1-plane containing $\overrightarrow{0}$ in \mathbb{R}^{3}. $\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & -3 \\ -1 & 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

