Multivariable Calculus

Math 212 Spring 2006 © 2006 Ron Buckmire

Fowler 112 MWF 8:30pm - 9:25am http://faculty.oxy.edu/ron/math/212/06/

Class 6: Friday February 3

SUMMARY Review of Linear Systems: Matrix Operations CURRENT READING Williamson & Trotter, Section 2.2, 2.3 and 2.4 HOMEWORK Williamson & Trotter, page 51 # 6, 7, 14, 17, 18; page 69: # 3, 11, 14; page 73: 2, 11; page 80: 1,2,3,4,11,12,13,14, 46 Extra Credit page 81: 49

Matrix Multiplication

An $m \times n$ matrix multiplies an $n \times p$ matrix to produce an $m \times p$ product.

Properties of Matrix Multiplication

(A+B)C = AC + BC (Right Distributive Law)

C(A+B) = CA + CB (Left Distributive Law)

(tA)(B) = t(AB) = A(tB) (Scalar Commutativity Law)

A(BC) = (AB)C (Associative Law)

 $\mathbf{A}B \neq BA$ (Matrix Multiplication is not necessarily Commutative)

Linearity of Matrix Multiplication

 $A(s\vec{u} + t\vec{v}) = sA\vec{u} + tA\vec{v}$

Theorem

Every solution of the linear system $A\vec{x} = \vec{b}$ has the form $\vec{x} = \vec{x}_h + \vec{x}_p$ where \vec{x}_p is a particular solution of the system and \vec{x}_h is a solution of the homogeneous equation $A\vec{x} = \vec{0}$

EXAMPLE 1

Give $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$. Find the solutions of $A\vec{x}_h = \vec{0}$ and $A\vec{x}_p = \begin{bmatrix} 3 \\ 9 \end{bmatrix}$ and show that $\vec{x} = \vec{x}_p + \vec{x}_h$ is another solution of the non-homogeneous system.

Theorem

A homogeneous system $A\vec{x} = \vec{0}$ has infinitely many non-zero solutions if it has more variables than equations (i.e. n > m). It also has infinitely many non-zero solutions if the equivalent reduced system $R\vec{x} = \vec{0}$ has more variables than nontrivial equations.

DEFINITION

A reduced matrix R can be derived from the coefficient matrix A by applying elementary row operations. A reduced matrix R has the properties: (i) that every column containing a leading entry or pivot is zero except for that element and (ii) every leading entry (or pivot) equals 1.

EXAMPLE 2

Which of the following matrices are in reduced form?

$$A = \begin{bmatrix} 2 & 0 \\ 1 & 0 \end{bmatrix} B = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} C = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} D = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

DEFINITION

A subset of \mathbb{R}^n is called a k-plane if it consists of all points $\vec{x} = t_1 \vec{u}_1 + t_2 \vec{u}_2 + \ldots + t_k \vec{u}_k + \vec{v}$ where \vec{v} is a fixed vector and the vectors \vec{v}_i are linearly independent fixed vectors and t_i are real parametric variables. A hyperplane is another name for a (n-1)-plane, i.e. the solution set of a single linear equation in \mathbb{R}^n .

EXAMPLE 3

Williamson & Trotter, page 73, #1. Solve the equation w+3x-2y+z=3 by expressing the solutions as a 3-plane in \mathbb{R}^4 .

EXERCISE 1

Williamson & Trotter, page 73, #10. Show that the follwing system's solution form a line or 1-plane containing
$$\vec{0}$$
 in \mathbb{R}^3 .
$$\begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -3 \\ -1 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$