Quiz 11

Multivariable Calculus

Name: _____

Date:	
Time Begun:	
Time Ended:	

Friday April 21 Ron Buckmire

Topic : Path Integrals

The idea behind this quiz is to provide you with another opportunity to illustrate your ability to compute path integrals.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : ____/10

Instructions:

- 0. Please look for a hint on this quiz posted to faculty.oxy.edu/ron/math/212/06
- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. QUIZZES WITH LOOSE SHEETS WILL NOT BE GRADED.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due on Monday April 24, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, ______, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

1. Consider the vector field $\vec{F}(x,y) = (1 - ye^{-x}, e^{-x})$.

(a) (5 points.) Show that the line integral of \vec{F} along the straight line path from (0,1) to (1,2) is $2e^{-1}$. [HINT: $\int u e^u du = ue^u - e^u$]

(b) (3 points.) Show that this vector field is a **gradient field**, in other words there exists a function f(x, y) such that $\nabla f = \vec{F} = (1 - ye^{-x}, e^{-x})$.

(c) (2 points.) Use the Fundamental Theorem for Path Integrals to show that the value of the path integral of \vec{F} from (0, 1) to (1, 2) is the same regardless of the path taken.