Name: \qquad

Date: \qquad
Time Begun: \qquad
Friday March 10
Ron Buckmire

Topic : The Multivariable Chain Rule
The idea behind this quiz is to provide you with an opportunity to illustrate your understanding of the derivative of a multivariable function.

Reality Check:

EXPECTED SCORE : ___ /10
ACTUAL SCORE : ___ $/ 10$

Instructions:

0. Please look for a hint on this quiz posted to faculty. oxy. edu/ron/math/212/06
1. Once you open the quiz, you have $\mathbf{3 0}$ minutes to complete, please record your start time and end time at the top of this sheet.
2. You may use the book or any of your class notes. You must work alone.
3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. QUIZZES WITH LOOSE SHEETS WILL NOT BE GRADED.
4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
6. Relax and enjoy...
7. This quiz is due on Monday March 20, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, \qquad pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

Inspired by Williamson \& Trotter, page 270, \#6.
Let $u=f(x, y)$. Make the change of variables $x=r \cos \theta, y=r \sin \theta$. Given $f(x, y)=\frac{1}{3} x^{3}+x^{2} y-$ $y^{2} x+2 y+5$ then $f(x, y)=f(x(r, \theta), y(r, \theta))=f(r, \theta)$
a. (2 points) Show that $\frac{\partial f}{\partial x}=x^{2}+2 x y-y^{2}, \quad \frac{\partial f}{\partial y}=x^{2}-2 x y+2$
b. (3 points) Find $\frac{\partial f}{\partial \theta}$.
c. (3 points) Find $\frac{\partial f}{\partial r}$.
d. (2 points) Use your answers from part (a) and (b) to evaluate f_{θ} and f_{r} when $r=2$ and $\theta=\pi / 2$.

