Quiz 3

Multivariable Calculus

Name: _____

Date:	
Time Begun: .	
Time Ended:	

Friday February 10 Ron Buckmire

Topic : Review of Linear Systems

The idea behind this quiz is to provide you with an opportunity to illustrate your understanding of linear systems.

Reality Check:

EXPECTED SCORE : ____/10

ACTUAL SCORE : ____/10

Instructions:

- 0. Please look for a hint on this quiz posted to faculty.oxy.edu/ron/math/212/06
- 1. Once you open the quiz, you have **30 minutes** to complete, please record your start time and end time at the top of this sheet.
- 2. You may use the book or any of your class notes. You must work alone.
- 3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one.
- 4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
- 5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
- 6. Relax and enjoy...
- 7. This quiz is due on Monday February 13, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, ______, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

Consider the planes x + 2y + z = 0 and x - 3y - z = 0.

1. (4 points) Find the intersection of these two planes or **EXPLAIN** why the intersection does not exist.

2. (6 points) Consider the related linear system with unknown constant parameters A, B and C

Γ	1	2	1	1	$\begin{bmatrix} x \end{bmatrix}$		$\begin{bmatrix} 0 \end{bmatrix}$	
	1	-3	-1		y	=	0	
L	A	B	C		$\begin{bmatrix} z \end{bmatrix}$		0	

(a) 2 points) Is it possible to find values of A, B and C such that the linear system has no solution? FULLY EXPLAIN YOUR ANSWER.

(b) (2 points) Is it possible to find values of A, B and C such that the linear system has **ONE** solution? FULLY EXPLAIN YOUR ANSWER.

(c) (2 points) Is it possible to find values of A, B and C such that the linear system has **MORE THAN ONE solution**? **FULLY EXPLAIN YOUR ANSWER**.