Multivariable Calculus

Name:
Date: \qquad Friday April 21
Time Begun: \qquad Ron Buckmire

Topic : More Multiple Integration
The idea behind this quiz is to provide you with another opportunity to illustrate your facility with multiple integration.

Reality Check:

EXPECTED SCORE : \qquad ACTUAL SCORE : \qquad

Instructions:

0. Please look for a hint on this quiz posted to faculty. oxy. edu/ron/math/212/06/.
1. Once you open the quiz, you have as much time as you like to complete it, please record your start time and end time at the top of this sheet.
2. You may use the book or any of your class notes. You must work alone.
3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. Quizzes with loose sheets will not be graded.
4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
6. Relax and enjoy...
7. This quiz is due on Monday April 24, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, \qquad pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.
2. (5 points.) Write down a multiple integral which can be used to compute the volume $V=\frac{1}{6} a^{2} h$ of a pyramid with height h and a right isosceles triangular base where the equal sides are of length a (where $h \gg a>0$). The location of the apex of the pyramid is above the right angle. (HINT: think of this as the volume under a plane which intersects the x and y axis at a and the z-axis at h.)

