Name:
Date: \qquad Friday March 31
Time Begun: \qquad Ron Buckmire

Topic : Method of Lagrange
The idea behind this quiz is to provide you with an opportunity to illustrate your understanding of the Method of Lagrange for constrained multivariable optimization.

Reality Check:

EXPECTED SCORE : \qquad ACTUAL SCORE : _ $/ 10$

Instructions:

0. Please look for a hint on this quiz posted to faculty. oxy. edu/ron/math/212/06/.
1. Once you open the quiz, you have as much time as you like to complete it, please record your start time and end time at the top of this sheet.
2. You may use the book or any of your class notes. You must work alone.
3. If you use your own paper, please staple it to the quiz before coming to class. If you don't have a stapler, buy one. Quizzes with loose sheets will not be graded.
4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.
5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.
6. Relax and enjoy...
7. This quiz is due on Monday April 3, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, \qquad pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

1. A solid circular cylinder of height H and radius R has volume $V(r, h)=\pi r^{2} h$ and surface area $A(r, h)=2 \pi r h+2 \pi r^{2}$.
(a) (4 points.) An old standard Calculus problem is to maximize the volume $V(r, h)$ subject to the "fixed-area constraint" $A(r, h)=A_{0}$, where A_{0} is some positive constant. Use Lagrange multipliers to show that the constrained maximum occurs when $h=2 r$.
(b) (4 points.) Another old standard Calculus problem is to maximize the surface area $A(r, h)$ subject to the "fixed-volume constraint" $V(r, h)=V_{0}$, where V_{0} is some positive constant. Use Lagrange multipliers to show that the constrained maximum occurs when $h=2 r$.
(c) (2 points.) Use your answers from part (a) and part (b) to obtain expressions for the Volume V and Surface Area A of the objects in terms of the fixed parameters V_{0} and A_{0} (where $V=V\left(A_{0}\right)$ and $A=A\left(V_{)}\right)$which satisfy the "fixed-volume" and "fixed-area" constraints. What is the connection between your answers?
