# Multivariable Calculus

Math 212 Fall 2005 ©2005 Ron Buckmire Fowler 307 MWF 9:30pm - 10:25am http://faculty.oxy.edu/ron/math/212/05/

#### Class 30: Wednesday December 7

SUMMARY Conservative Vector Fields CURRENT READING Williamson & Trotter, §9.2

#### THEOREM

All gradient fields are conservative vector fields. All conservative vector fields have zero curl. All gradient fileds have zero curl.

## THEOREM: properties of conservative vector fields

Let  $\vec{F}$  be a continuous vector field defined in a polygonally connected open set D in  $\mathbb{R}^n$ . THEN *each* of the following three statements implies the other two.

- (a) The integral  $\vec{F}(\vec{x})$  over every piecewise smooth path from  $\vec{x}_1$  to  $\vec{x}_2$  in D has the same value, and we can write it as  $\int_{\vec{x}_1}^{\vec{x}_2} \vec{F}(\vec{x}) \cdot d\vec{x} = \int_{\vec{x}_1}^{\vec{x}_2} \vec{\nabla} f(\vec{x}) \cdot d\vec{x} = f(\vec{x}_2) f(\vec{x}_1)$ .
- (b) The integral over every piecewise smooth closed path  $\gamma$  in D is **zero**. In other words  $\oint_{\gamma} \vec{F} \cdot d\vec{x} = \oint_{\gamma} \vec{\nabla} f \cdot d\vec{x} = 0$
- (c) There is a continuously differentiable function  $f: D \to \mathbb{R}$  such that  $\vec{F}$  is the gradient of f, i.e.  $\nabla f = \vec{F}$  for all  $\vec{x}$  in D.

#### THEOREM

IF  $\vec{F}: \mathbb{R}^n \to \mathbb{R}^n$  is a continuously differentiable gradient field, then  $\vec{F}_{\vec{x}}$ , the Jacobian matrix of  $\vec{F}$  is **symmetric**. In other words  $\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$  for all  $i, j = 1, 2, \dots, n$ .

## EXAMPLE 1

Williamson & Trotter, page 418, #3. Is  $\vec{F}(x,y) = (x-y,x+y)$  a gradient field?

## Exercise 2

Williamson & Trotter, page 418, #4. Is  $\vec{G}(x, y, z) = (y, z, x)$  a gradient field?



Williamson & Trotter, page 418, #10. Find a field potential for the given field.  $\vec{F}(x,y) = (2xy, x^2 + z^2, 2yz)$ .

## Exercise 2

Williamson & Trotter, page 418, #11. Find a field potential for the given field.  $\vec{G}(x,y) = (y\cos(xy), x\cos(xy)).$ 

# GROUPWORK

Williamson & Trotter, page 418, #14. Consider the vector field  $\vec{F}$  which is the gradient of the Newtonian potential  $f(\vec{x}) = -|\vec{x}|^{-1}$  for nonzero  $\vec{x}$  in  $\mathbb{R}^3$ . Find the work done in moving a particle from (1,1,1) to (-2,-2,-2) along a smooth curve lying in the domain of  $\vec{F}$ .