Multivariable Calculus

Math 212 Fall 2005 ©2005 Ron Buckmire Fowler 307 MWF 9:30pm - 10:25am http://faculty.oxy.edu/ron/math/212/05/

Class 29: Monday December 5

SUMMARY Green's Theorem
CURRENT READING Williamson & Trotter, §9.1
HOMEWORK page 408: 3, 4, 6, 7, 10 Extra Credit page 409: 15, 18, 20

THEOREM: Green's Theorem

Given a planar region D whose boundary is a single closed curve γ parametrized by a function $\vec{g}(t)$ so that as t increases from a to b, $\vec{g}(t)$ traces out γ once in the *counter-clockwise* direction, then if F(x, y) and G(x, y) are real-valued functions defined on D including its boundary, then the formula for Green' Theorem is:

$$\int \int_{D} \left(\frac{\partial G}{\partial x} - \frac{\partial F}{\partial y} \right) dx dy = \oint_{\gamma} F dx + G dy \qquad \text{(Green's Theorem)}$$

EXAMPLE 1

Williamson & Trotter, page 408, #1. Use Green's Theorem to compute the value of the line integral $\oint_{\gamma} y \, dx + x^2 \, dy$ where γ is the indicated path. γ is the circle given by $g(t) = (\cos t, \sin t), \ 0 \le t \le 2\pi$.

Exercise 1

Williamson & Trotter, page 408, #2. Repeat problem #1, this time with γ being the square with corners at $(\pm 1, \pm 1)$, traced counter-clockwise.

EXAMPLE 2

Williamson & Trotter, page 408, #11. Show that if D is a simple region bounded by a piecewise smooth curve γ , traced counter clockwise, then the area of the interior of γ (i.e. the area of D) is given by

$$A(D) = \frac{1}{2} \oint_{\gamma} -y \, dx + x \, dy$$

Now that we know about **curl** and **div** we can use them to re-write the Green's Theorem result. Note that the integrand in the area integral in Green's Theorem is the non-zero component in $\vec{\nabla} \times \vec{F}$ where $\vec{F}(x, y) = (F(x, y), G(x, y), 0)$

THEOREM: Stokes' Theorem in the Plane

So, in vector format, we can write Green's Theorem as

$$\int \int_D (\vec{\nabla} \times \vec{F}) \cdot \hat{k} \, dA = \oint_{\partial D} \vec{F} \cdot d\vec{x}$$

This result is known as **Stokes' Theorem in the Plane**. Note that $d\vec{x} = \hat{t} \left| \frac{d\vec{g}}{dt} \right| ds$ where s is a parameter representing arc length along the curve γ (not important) inn a direction \hat{t} always tangent to the curve.

In Stokes' Theorem we are dealing with a vector field in \mathbb{R}^2 which has the form $\vec{F} = (F(x, y), G(x, y))$. In Gauss' Theorem we are dealing with a vector field which has the form $\vec{H} = (-G(x, y), F(x, y))$

Suppose we had a unit vector \hat{n} which is orthogonal in the plane (i.e. normal) to the curve γ at every point. Then $\hat{n} \cdot \hat{t} = 0$ and $\vec{F} \cdot d\vec{x} = (F,G) \cdot (dx,dy) = F dx + G dy = -G (-dy) + F dx = (-G,F) \cdot (-dy,dx) = \vec{H} \cdot \hat{n} ds$

This also means that $\vec{H} \cdot d\vec{x} = \vec{F} \cdot \hat{n}ds$. Since $\vec{H} \cdot d\vec{x} = (-G, F) \cdot (dx, dy) = -G \ dx + F \ dy = (F, G) \cdot (dy, -dx) = \vec{F} \cdot \hat{n} \ ds$ But using Green's Theorem on $\vec{H} = (-G(x, y), F(x, y))$ and recalling $\vec{F} = (F(x, y), G(x, y))$ produces

$$\begin{split} \int_{\gamma} \vec{H} \cdot d\vec{x} &= \int_{\gamma} -G(x,y) \, dx + F(x,y) \, dy &= \int \int_{D} \left(\frac{\partial}{\partial x} [F(x,y)] - \frac{\partial}{\partial y} [-G(x,y)] \right) \, dA \\ \int_{\gamma} \vec{F} \cdot \hat{n} \, ds &= \int \int_{D} \left(\frac{\partial F}{\partial x} + \frac{\partial G}{\partial y} \right) \, dA \end{split}$$

But the right hand side of this expression should remind you of the divergence operator. So we can also re-write Green's theorem using another differential vector operator, this time $\operatorname{div} \vec{F}$

THEOREM: Gauss' Theorem in the Plane

$$\int \int_D \vec{\nabla} \cdot \vec{F} \, dA = \int_{\partial D} \vec{F} \cdot \hat{n} \, ds$$

EXAMPLE 1

Williamson & Trotter, Page 408, # 9. Evaluate $\int_C (x^2 - y^2) dx + (x^2 + y^2) dy$ where C is the circle of radius 1 centered at the origin and traced clockwise.

Exercise 1

Williamson & Trotter, Page 408, # 12. Let f be a real valued function with continuous second order derivatives in an open set D in \mathbb{R}^2 . Let \vec{F} a vector field defined in D by $\vec{F} = \vec{\nabla} f(\vec{x})$. Show that if $\vec{F} = (F(\vec{x}), G(\vec{x}))$, then the equation $\frac{\partial G}{\partial x} - \frac{\partial F}{\partial y} = 0$ at all points in region D.