Multivariable Calculus

Math 212 Fall 2005
(C) 2005 Ron Buckmire

Fowler 307 MWF 9:30pm - 10:25am http://faculty.oxy.edu/ron/math/212/05/

Class 25: Monday November 14

SUMMARY Change of Variables Theorem
CURRENT READING Williamson \& Trotter, Section 7.4
HOMEWORK \#24 Williamson \& Trotter, page 346: 3, 6, 8, 9, 17, 18, 19 Extra Credit page 347: 22, 26

Suppose we want to change variables from an integral defined over $T(R)$ over one that is defined over R where $\vec{x}=\vec{T}(\vec{u}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$

Jacobi's Theorem

Given $\vec{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a continuously differentiable transformation and R is a subset of \mathbb{R}^{n} having a boundary consisting of finitely many smooth sets. IF R and its boundary are contained in the domain of \vec{T} and that (i) \vec{T} is one-to-one on the interior of R and (ii) det $\left(\vec{T}_{\vec{u}}\right) \neq 0$ in the interior of R, THEN

$$
\int_{T(R)} f(\vec{x}) d V_{x}=\int_{R} f(\vec{T}(\vec{u}))\left|\operatorname{det}\left(\vec{T}_{\vec{u}}(\vec{u})\right)\right| d V_{u}
$$

or, using Leibnizian Notation where T maps from W^{*} in $u v w$-space to $W=T\left(W^{*}\right)$ in $x y z$-space
$\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w$ in \mathbb{R}^{3}
and

$$
\iint_{W} f(x, y) d x d y=\iint_{W^{*}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \text { in } \mathbb{R}^{2}
$$

Generally, we use this theorem to convert from Cartesian coordinates to polar, spherical, and cylindrical co-ordinates.

Change of Variables: Polar Coordinates

$$
\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Change of Variables: Cylindrical Coordinates

$$
\iint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(r \cos \theta, r \sin \theta, z) r d r d \theta d z
$$

Change of Variables: Spherical Coordinates

$$
\iiint_{W} f(x, y, z) d x d y d z=\iiint_{W^{*}} f(r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi) r^{2} \sin \phi d r d \theta d \phi
$$

EXAMPLE 1
Williamson \& Trotter, page 346, \#7. Compute $\int_{D} \cos \left(x^{2}+y^{2}\right) d x d y$ where D is the disk of radius $\sqrt{\pi / 2}$ centered at $(0,0)$.

Exercise 1
Williamson \& Trotter, page 346, \#12. Compute $\int_{C} z^{2} d x d y d z$ where C is the region in \mathbb{R}^{3} described by $1 \leq x^{2}+y^{2}+z^{2} \leq 4$

Paired GroupWork

Williamson \& Trotter, page 364, \#24. (a) Sketch the region R bounded by the graphs of $y=x^{3}$ and $x=y^{2}$. (b) The double integral $\int_{R} x d x d y$ is equal to each of two iterated integrals over R. Write down both of them. Each member of the pair evaluates a different integral and show they have the same value.

Exercise 2

Williamson \& Trotter, page 365, \#46.. The region of integration R for $h(x, y, z)$ is bounded above by $z=2$ and below by the circular parabaloid $z=x^{2}+y^{2}$; find the limits, which may be non-constant, for $\int_{R} h d V=\int_{a}^{b} \int_{c}^{d} \int_{e}^{f} h(x, y, z) d z d x d y$, the integral of h over the region R.

EXAMPLE 2
Williamson \& Trotter, page 366, \#61. $\int_{0}^{2 \pi} d \theta \int_{0}^{1} d r \int_{0}^{\sqrt{1-r^{2}}} r d z$
(a) Sketch the region of integration. (b) Write the integral in terms of rectangular coordinates. (c) Write the integral in terms of spherical coordinates. (d) Evaluate the integral.

Exercise 3

Williamson \& Trotter, page 365, \#41.. Let C be a solid cylinder of radius 1 symmetric about the z-axis. Let W be the wedge-shaped subset of C where $0 \leq z \leq x$. Write an iterated integral for $\int_{W} z d V$ (a) in rectangular coordinates. (b) in cylindrical coordinates. (c) Evaluate the multiple integral whichever way you prefer.

