## Multivariable Calculus

Math 212 Fall 2005
(C)2005 Ron Buckmire

Fowler 307 MWF 9:30pm - 10:25am
http://faculty.oxy.edu/ron/math/212/05/

## Class 23: Wednesday November 9

SUMMARY Introduction to Iterated Integration
CURRENT READING Williamson \& Trotter, Section 7.1
HOMEWORK \#22 Williamson \& Trotter, page 321: 3,4,5,6,7,11,12,16,17,21 Extra Credit page 322: 24, 29

Recall that $\int_{a}^{b} f(x) d x$ is a CONSTANT. Let's consider a function $f(x, y)$ such that $f: \mathbb{R}^{2} \rightarrow$ $\mathbb{R}$ is defined on the rectangle $a \leq x \leq b \cap c \leq y \leq d$.
Consider $\int_{a}^{b} f(x, y) d x$ and $\int_{c}^{d} f(x, y) d y$.
Question: Are these objects constants?
Answer: No!
Thus we can evaluate iterated integral by integrating with respect to one variable and then the other, in sequence.
Fubini's Theorem

$$
\begin{aligned}
I & =\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x=\int_{a}^{b} F(x) d x \\
& =\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y=\int_{a}^{b} G(y) d y=I
\end{aligned}
$$

EXAMPLE 1
Evaluate $\int_{0}^{1} \int_{1}^{2} x^{2}+y d x d y$ two different ways to illustrate the result above.

## Iterated Integration Over Non-Rectangular Regions

To integrate $f(x, y)$ over a " $y$-simple" region defined as $a \leq x \leq b \cap u(x) \leq y \leq v(x)$ use $\int_{a}^{b} \int_{u(x)}^{v(x)} f(x, y) d y d x$

To integrate $f(x, y)$ over a " $x$-simple" region defined as $r(y) \leq x \leq s(y) \cap c \leq y \leq d$ use $\int_{c}^{b} \int_{r(y)}^{s(y)} f(x, y) d x d y$
Exercise 1
Draw an example of a $y$-simple region and an $x$-simple region in the space below.

EXAMPLE 2
Integrate $f(x, y)=x y$ over the region bounded the vertical lines $x=-1$ and $x=2$ and by the graphs $y=1+x^{2}$ and $y=-x^{2}$.

GROUPWORK
Williamson \& Trotter, page 321, \# 18. Sketch the region defined by $x \geq 0, x^{2}+y^{2} \leq 2$ and $x^{2}+y^{2} \geq 1$. Write down the integral over the region in each of the two possible orders of $f(x, y)=x^{2}$ and evaluate them.

EXAMPLE 3
Williamson \& Trotter, page 321, \# 15. Evaluate $\int_{0}^{\pi} \sin x d x \int_{0}^{1} d y \int_{0}^{2}(x+y+z) d z$

