Multivariable Calculus

Fowler 307 MWF 9:30pm - 10:25am
Math 212 Fall 2005
(C) 2005 Ron Buckmire
http://faculty.oxy.edu/ron/math/212/05/

Class 22: Monday November 7

SUMMARY Curvilinear Coordinates
CURRENT READING Williamson \& Trotter, Section 6.5
HOMEWORK \#21 Williamson \& Trotter, page 308:3,4,6,7,9,10,12; page 310: 10,21,29,30,36,37
Extra Credit page 309: 15; page 310: 16, 33, 38

Polar Coordinates

Let $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a function which maps the 2-dimensional $x y$-plane into the 2-dimensional $r \theta$-plane.

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\vec{f}(r, \theta)=\left[\begin{array}{c}
r \cos \theta \\
r \sin \theta
\end{array}\right] \text {, where } 0<r<\infty, 0 \leq \theta<2 \pi
$$

The image of \vec{f} is the entirety of \mathbb{R}^{2} except the origin. The numbers r and θ are known as polar coordinates. The function \vec{f} also has an inverse function \vec{g}, which means we can map FROM polar coordinates back to cartesian $x y$-coordinates (but you have to be careful about inverting the trig functions)

$$
\left[\begin{array}{l}
r \\
\theta
\end{array}\right]=\vec{g}(x, y)=\left[\begin{array}{c}
\sqrt{x^{2}+y^{2}} \\
\arctan \left(\frac{y}{x}\right)+k \pi
\end{array}\right] \text {, where } x \neq 0, k \in Z
$$

Spherical Coordinates

Let $\vec{s}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a function which maps the 3 -dimensional $x y z$-plane into the 3 dimensional $r \phi \theta$-plane.

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\vec{s}(r, \phi, \theta)=\left[\begin{array}{c}
r \sin \phi \cos \theta \\
r \sin \phi \sin \theta \\
r \cos \phi
\end{array}\right], \text { where } 0<r<\infty, \quad 0 \leq \phi<\pi, \quad 0 \leq \theta<\pi
$$

Here the image of $\vec{s}(r, \phi, \theta)$ is all of \mathbb{R}^{3} except the z-axis. The numbers r, ϕ and θ are known as spherical coordinates. Like with polar co-ordinates we can map FROM spherical coordinates TO cartesian coordinates by inverting \vec{s}, which we will call \vec{t}.

$$
\left[\begin{array}{c}
r \\
\phi \\
\theta
\end{array}\right]=\vec{t}(x, y, z)=\left[\begin{array}{c}
\sqrt{x^{2}+y^{2}+z^{2}} \\
\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\
\arccos \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)
\end{array}\right] \text {, where } y \geq 0, x^{2}+y^{2}>0
$$

Notice that when $\phi=0$ spherical coordinates are identical to polar coordinates.

Cylindrical Coordinates

Cylindrical coordinates are basically the three dimensional version of polar co-ordinates where a 3 rd coordinate z is added.

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
r \cos \theta \\
r \sin \theta \\
z
\end{array}\right], \text { where } 0<r<\infty, \quad-\pi<\theta \leq \pi, \quad-\infty \leq z<\infty
$$

EXAMPLE 1
Let's compute the Jacobian (derivative matrices) of the standard transformations to Cartesian coordinates from polar, spherical and cylindrical coordinates.

Exercise 1
Find the determinant of the Jacobian matrices of the standard polar, spherical and cylindrical coordinate transformations.

Williamson \& Trotter, page 309, \#6. Find $\frac{\partial}{\partial x} f\left(K(x, y), K(x+y, x-y), x^{2}+y^{2}\right)$ where $f(x, y, z)=x^{2}+y^{2}-z^{2}$ and $K(x, y)=x y$.

Williamson \& Trotter, page 311, \#42. Find the points on $x^{2}+2 x y+3 y^{2}=14$ which are closest to and furthest from the origin.

