Multivariable Calculus

Math 212 Fall 2005
(C)2005 Ron Buckmire

Fowler 307 MWF 9:30pm - 10:25am
http://faculty.oxy.edu/ron/math/212/05/

Class 17: Monday October 17

SUMMARY Gradient Fields and Vector Fields
CURRENT READING Williamson \& Trotter, Section 6.1 and 6.2
HOMEWORK Williamson \& Trotter, page 257: 5, 6, 8, 9, 17, 20, 26, 27 page 261: 4, 8, Extra Credit page 259: 38

THEOREM

Let $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable in an open set D in \mathbb{R}^{n}. Then at each point \vec{x} in D for which $\vec{\nabla} f(\vec{x})$ points in the direction of maximum increase for f. The number $|\vec{\nabla} f(\vec{x})|$ is the maximum rate of increase of f at the point \vec{x}.

EXAMPLE

Consider $f(x, y)=x^{2}+y^{2}$. The gradient $\vec{\nabla} f(\vec{x})=2 x \hat{i}+2 y \hat{j}$. This means that at every point (x, y) we can draw a vector which corresponds to the gradient. This is known a vector field and can be sketched in the space below. Vector fields which are obtained by using the gradient operator are called gradient fields.

Exercise

Consider $\vec{F}(\vec{x})=(-y, x)$ for $x^{2}+y^{2} \leq 4$. Sketch this vector field below. Is it a gradient field?

A great web resource for visualizing Vector Fields is the Java Vector Field Analyzer II, available from the Math 212 Course Website resources page.

Normal Vector

Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $n \geq 2$ with f continuously differentiable at \vec{x}_{0}. Let S be a level set of f containing \vec{x}_{0}. If $\vec{\nabla} f\left(\vec{x}_{0}\right) \neq 0$, then $\vec{\nabla} f\left(\vec{x}_{0}\right)$ is a normal vector to S at \vec{x}_{0}, and all points in a tangent (line) plane to S at \vec{x}_{0} satisfy the equation

$$
\vec{\nabla} f\left(\vec{x}_{0}\right) \cdot\left(\vec{x}-\vec{x}_{0}\right)=0
$$

EXAMPLE

Let's find the equation of the tangent line to the $k=25$ level set of $f(x, y)=x^{2}+y^{2}$ at the point $(3,4)$.

Do you notice that the slope of the tangent line is orthogonal to the direction of the gradient vector, at the point $(3,4)$? How can you show this?

These ideas are combined to produce the following theorem. This theorem is the basis for a very important technique for solving nonlinear problems called the Method of Steepest Descent.

THEOREM

The direction of maximum increase of a differentiable function f at \vec{x}_{0} is perpendicular to the level set of f containing \vec{x}_{0}, assuming $\vec{\nabla} f\left(\vec{x}_{0}\right) \neq 0$.

Flow Lines

Consider a continuously differentiable vector field $\vec{F}(\vec{x})$ is defined on an open subset S of \mathbb{R}^{n}. The parametrized curve $\vec{x}=\vec{g}(t)$ is called a flow line of $\vec{F}(\vec{x})$ if the velocity vector $\frac{d \vec{x}}{d t}$ at a point \vec{x} in S coincides with the vector $\vec{F}(\vec{x})$, in other words, if $\frac{d \vec{x}}{d t}=\vec{F}(\vec{g}(t))$

Exercise

Williamson \& Trotter, page 261, \#7. (a) Verify that the curve parametrized by $\vec{x}(t)=$ $(a \cos t+b \sin t, b \cos t-a \sin t)$ is a flow line of the vector field $\vec{F}(\vec{x})=(y,-x)$. (b) Show that these flow lines are circles.

