Multivariable Calculus

Math 212 Fall 2005
(C) 2005 Ron Buckmire

Fowler 307 MWF 9:30pm - 10:25am
http://faculty.oxy.edu/ron/math/212/05/

Class 13: Wednesday September 28

SUMMARY Differentiability of a Vector Function of a Vector Variable: The Gradient CURRENT READING Williamson \& Trotter, Section (Section 5.2, 5.3)
HOMEWORK Williamson \& Trotter, page 232: 6, 7, 8, 9, 12, 19, 20; Extra Credit page 232: \# 21

Recall that the definition of a derivative
$\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=A$ and $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)-A\left(x-x_{0}\right)}{x-x_{0}}=0$ where $f^{\prime}\left(x_{0}\right)=A$.

DEFINITION: differentiable

Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. f is differentiable at \vec{x}_{0} if \vec{x}_{0} is an interior point of the domain of f and there exists a vector \vec{a} such that

$$
\lim _{\vec{x} \rightarrow \vec{x}_{0}} \frac{f(\vec{x})-f\left(\vec{x}_{0}\right)-\vec{a} \cdot\left(\vec{x}-\vec{x}_{0}\right)}{\left|\vec{x}-\vec{x}_{0}\right|}=0
$$

The vector \vec{a} is called the gradient of the differentiable function $\vec{f}(\vec{x})$ at \vec{x}_{0} and is denoted $\vec{\nabla} f$ which is pronounced "del f " or "grad f."

DEFINITION:

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at \vec{x}_{0} then the $k^{\text {th }}$ coordinate of the gradient $\vec{\nabla} f\left(\vec{x}_{0}\right)$ is the $k^{t h}$ partial derivative of f at \vec{x}_{0}, for $k=1,2, \ldots, n$.

$$
\vec{\nabla} f\left(\vec{x}_{0}\right)=\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}, \ldots, f_{x_{n}}\right)
$$

Theorem

Let the domain of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an open subset D of \mathbb{R}^{n} for which all partial derivatives of $\frac{\partial f}{\partial x_{i}}$ are continuous. Then f is differentiable at every point of D.
EXAMPLE
Compute $\vec{\nabla} f$ for $f(x, y)=x y^{2} z^{3}$.

Theorem: Differentiability Implies Continuity

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at a point \vec{x}_{0} of its domain, then f is continuous at \vec{x}_{0}.

Tangent Approximation
For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ we know that the tangent approximation is

$$
T(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

This is the first degree Taylor Polynomial approximation.
For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we can write the Tangent Approximation as

$$
T(\vec{x})=f\left(\vec{x}_{0}\right)+\vec{\nabla} f\left(\vec{x}_{0}\right) \cdot\left(\vec{x}-\vec{x}_{0}\right)
$$

EXAMPLE

Lets find the tangent approximation to the surface $z=f(x, y)=1-2 x^{2}-y^{2}$ at $(1 / 2,1 / 2)$.

EXERCISE

Williamson \& Trotter, page 232, \#12. Find the tangent approximation $T(\vec{x})$ to the function $f(x, y, z)=(x-y) z$ at $(1,0,1)$.

DEFINITION

For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and a direction \vec{v} the directional derivative is defined as

$$
\frac{\partial f}{\partial \vec{v}}=\lim _{t \rightarrow 0} \frac{f(\vec{x}+t \vec{v})-f(\vec{x})}{t}=\vec{\nabla} f(\vec{x}) \cdot \vec{v}
$$

NOTE: that if the direction $\vec{v}=\hat{e}_{k}$ then the directional derivative in that direction (i.e. parallel to the x_{k} axis) is simply the partial derivative with respect to x_{k}.

$$
\frac{\partial f}{\partial \hat{e}_{k}}=\vec{\nabla} f(\vec{x}) \cdot \hat{e}_{k}=\frac{\partial f}{\partial x_{k}}
$$

EXERCISE

Williamson \& Trotter, page 262, \#6. Find the directional derivative at $\vec{x}=(1,0)$ in the direction $\vec{v}=(\cos (\alpha), \sin (\alpha))$ of $f(x, y)=e^{x} \sin (y)$.

