Multivariable Calculus

Math 212 Fall 2005 ©2005 Ron Buckmire Fowler 307 MWF 9:30pm - 10:25am http://faculty.oxy.edu/ron/math/212/05/

Class 12: Monday October 3

SUMMARY Limits of a Multivariable Function
CURRENT READING Williamson & Trotter, Section (Section 5.1)
HOMEWORK Williamson & Trotter, page 224: # 2, 3, 4, 5, 8, 12, 25, 26, 27, 42, Extra Credit page 225: # 32, 33

In order to begin our discussion of differentiability of a vector function of a vector input variable we will need to define a number of new terms.

DEFINITION: neighborhood

For a given value of $\delta > 0$, a δ -ball is the set of points \vec{x} in \mathbb{R}^n which satisfy the inequality that $|\vec{x} - \vec{x}_0| < \delta$. Another name for this set of points is **neighborhood**, which is sometimes denoted $N_{\delta}(\vec{x}_0)$.

DEFINITION: limit point

A limit point (sometimes called a cluster point) \vec{x} of a set S is a point (not necessarily in S) for which every δ neighborhood of \vec{x} contains at least one point which belongs to S.

DEFINITION: interior point

An interior point is a point \vec{x} in a set S for which there exists a δ neighborhood of \vec{x} which only contains points which belong to S.

DEFINITION: boundary point

A **boundary point** is a point \vec{x} in a set S for which every δ neighborhood of \vec{x} both a point which is in S and a point which is not in S.

DEFINITION: open set

An **open set** is a set S for which *every* element of S is an interior point.

DEFINITION: closed set

A closed set is a set S which contains *every* limit point of S. Note: by definition, every boundary point of a set is a limit point. So a closed set contains all of its boundary points.

EXAMPLE

Consider $D_1 = \{x : a \le x \le b\}$, $D_2 = \{\vec{x} : a \le x_1 \le b, c < x_2 < d\}$, $D_3 = \{\vec{x} : |\vec{x} - \vec{x}_0| < 1\}$, $D_4 = \mathbb{R}^3$ and $D_5 = \{\vec{x} : \vec{x} = (1, 1)\}$. Describe whether these sets are open, closed, neither open nor closed or both open and closed.

DEFINITION: limit

Consider a function $\vec{f} : \mathbb{R}^n \to \mathbb{R}^m$. Let $\vec{y_0}$ be a point in \mathbb{R}^m and $\vec{x_0}$ is a limit point of the domain of f in \mathbb{R}^n . We say that $\vec{y_0}$ is the **limit** of \vec{f} at $\vec{x_0}$ if for a given ϵ there exists a $\delta > 0$ such that $|\vec{f}(\vec{x}) - \vec{y_0}| < \epsilon$ whenever \vec{x} is in the domain of \vec{f} and satisfies $0 < |\vec{x} - \vec{x_0}| < \delta$. This process is denoted by

$$\lim_{\vec{x}\to\vec{x}_0}\vec{f}(\vec{x})=\vec{y}_0$$

EXAMPLE

Consider $f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$. Show that $\lim_{\vec{x} \to \vec{0}} \vec{f}$ does not exist. (a) Take the limit by approaching (0, 0) along the *x*-axis. What value do you get?

- (b) Take the limit by approaching (0,0) along the y-axis. What value do you get?
- (c) Take the limit by approaching (0,0) along the line $y = \alpha x$. What value do you get?

DEFINITION: continuity

A function $\vec{f} : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **continuous at** \vec{x}_0 IF (1) \vec{x}_0 is in the domain of \vec{f} AND (2) $\lim_{\vec{x} \to \vec{x}_0} \vec{f}(\vec{x}) = \vec{f}(\vec{x}_0)$

Basically this says, that when \vec{x} is "close" to \vec{x}_0 , then $\vec{f}(\vec{x})$ is close to $\vec{f}(\vec{x}_0)$. This is the basic conceptual idea of **continuity**.

Theorem

A vector function of a vector variable is continuous at a point if and only if all of its coordinate functions are continuous at that point.

Theorem

Given two continuous functions $\vec{f} : \mathbb{R}^n \to \mathbb{R}^m$ and $\vec{g} : \mathbb{R}^m \to \mathbb{R}^p$, $\vec{g}(\vec{f}(\vec{x}))$ is also continuous wherever it is defined. In other words, composite functions of continuous functions are continuous wherever they are well defined.

EXERCISE

Williamson & Trotter, page 224, #25. Determine the points at which the function fails to have a limit. Take the domain of each coordinate function as large as possible. The domain of \vec{f} is then the part common to the domain of all the cordinate functions. The

function is
$$f(u, v) = \left(\frac{uv}{1 - u^2 - v^2}, \frac{1}{2 - u^2 - v^2}\right)$$

Is the function continuous at every point on this domain? Is this domain open or closed, neither or both?