Multivariable Calculus

Math 212 Fall 2005
(C) 2005 Ron Buckmire

Fowler 307 MWF 9:30pm - 10:25am http://faculty.oxy.edu/ron/math/212/05/

Class 12: Monday October 3

SUMMARY Limits of a Multivariable Function
CURRENT READING Williamson \& Trotter, Section (Section 5.1)
HOMEWORK Williamson \& Trotter, page 224: \# 2, 3, 4, 5, 8, 12, 25, 26, 27, 42, Extra Credit page 225: \# 32, 33

In order to begin our discussion of differentiability of a vector function of a vector input variable we will need to define a number of new terms.

DEFINITION: neighborhood

For a given value of $\delta>0$, a δ-ball is the set of points \vec{x} in \mathbb{R}^{n} which satisfy the inequality that $\left|\vec{x}-\vec{x}_{0}\right|<\delta$. Another name for this set of points is neighborhood, which is sometimes denoted $N_{\delta}\left(\vec{x}_{0}\right)$.

DEFINITION: limit point

A limit point (sometimes called a cluster point) \vec{x} of a set S is a point (not necessarily in S) for which every δ neighborhood of \vec{x} contains at least one point which belongs to S.

DEFINITION: interior point

An interior point is a point \vec{x} in a set S for which there exists a δ neighborhood of \vec{x} which only contains points which belong to S.

DEFINITION: boundary point

A boundary point is a point \vec{x} in a set S for which every δ neighborhood of \vec{x} both a point which is in S and a point which is not in S.

DEFINITION: open set

An open set is a set S for which every element of S is an interior point.

DEFINITION: closed set

A closed set is a set S which contains every limit point of S. Note: by definition, every boundary point of a set is a limit point. So a closed set contains all of its boundary points.

EXAMPLE

Consider $D_{1}=\{x: a \leq x \leq b\}, D_{2}=\left\{\vec{x}: a \leq x_{1} \leq b, c<x_{2}<d\right\}, D_{3}=\left\{\vec{x}:\left|\vec{x}-\vec{x}_{0}\right|<1\right\}$, $D_{4}=\mathbb{R}^{3}$ and $D_{5}=\{\vec{x}: \vec{x}=(1,1)\}$. Describe whether these sets are open, closed, neither open nor closed or both open and closed.

DEFINITION: limit

Consider a function $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Let \vec{y}_{0} be a point in \mathbb{R}^{m} and \vec{x}_{0} is a limit point of the domain of f in \mathbb{R}^{n}. We say that \vec{y}_{0} is the limit of \vec{f} at \vec{x}_{0} if for a given ϵ there exists a $\delta>0$ such that $\left|\vec{f}(\vec{x})-\vec{y}_{0}\right|<\epsilon$ whenever \vec{x} is in the domain of \vec{f} and satisfies $0<\left|\vec{x}-\vec{x}_{0}\right|<\delta$. This process is denoted by

$$
\lim _{\vec{x} \rightarrow \vec{x}_{0}} \vec{f}(\vec{x})=\vec{y}_{0}
$$

EXAMPLE

Consider $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$. Show that $\lim _{\vec{x} \rightarrow \overrightarrow{0}} \vec{f}$ does not exist.
(a) Take the limit by approaching $(0,0)$ along the x-axis. What value do you get?
(b) Take the limit by approaching $(0,0)$ along the y-axis. What value do you get?
(c) Take the limit by approaching $(0,0)$ along the line $y=\alpha x$. What value do you get?

DEFINITION: continuity

A function $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be continuous at \vec{x}_{0} IF (1) \vec{x}_{0} is in the domain of \vec{f} AND (2) $\lim _{\vec{x} \rightarrow \vec{x}_{0}} \vec{f}(\vec{x})=\vec{f}\left(\vec{x}_{0}\right)$
Basically this says, that when \vec{x} is "close" to \vec{x}_{0}, then $\vec{f}(\vec{x})$ is close to $\vec{f}\left(\vec{x}_{0}\right)$. This is the basic conceptual idea of continuity.

Theorem

A vector function of a vector variable is continuous at a point if and only if all of its coordinate functions are continuous at that point.

Theorem

Given two continuous functions $\vec{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\vec{g}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}, \vec{g}(\vec{f}(\vec{x}))$ is also continuous wherever it is defined. In other words, composite functions of continuous functions are continuous wherever they are well defined.

EXERCISE

Williamson \& Trotter, page 224, \#25. Determine the points at which the function fails to have a limit. Take the domain of each coordinate function as large as possible. The domain of \vec{f} is then the part common to the domain of all the cordinate functions. The function is $f(u, v)=\left(\frac{u v}{1-u^{2}-v^{2}}, \frac{1}{2-u^{2}-v^{2}}.\right)$

Is the function continuous at every point on this domain? Is this domain open or closed, neither or both?

