Multivariable Calculus

Math 212 Fall 2005
(C) 2005 Ron Buckmire

Fowler 307 MWF 9:30pm - 10:25am
http://faculty.oxy.edu/ron/math/212/05/

SUMMARY Application of Partial Derivatives: Vector Partial Derivatives and Quadric Surfaces
CURRENT READING Williamson \& Trotter, Section (Section 4.3)
HOMEWORK Williamson \& Trotter, page 203: 3, 9, 12, 22, 25, 31, 34, 37; Extra Credit page 204: \# 38, 39

DEFINITION

A vector function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of a vector variable, $\vec{f}(\vec{x})$, has a vector partial derivative given by

$$
\frac{\partial \vec{f}}{\partial x_{i}}=\left(\frac{\partial f_{1}}{\partial x_{i}}, \frac{\partial f_{2}}{\partial x_{i}}, \ldots, \frac{\partial f_{m}}{\partial x_{i}}\right)
$$

EXAMPLE 1

Williamson \& Trotter, page 210, \#1. Find formulas for the vector partial derivative of the function $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ where $\vec{f}(x, y)=\left[\begin{array}{c}x+y \\ x-y \\ x^{2}+y^{2}\end{array}\right]$

Graphical Interpretation of Vector Partial Derivative

If you think about a vector function of a vector variable only varying with respect to one variable while the rest of the variables are held constant then you could reframe this as a vector function of that one scalar variable, and its image would trace out a coordinate curve in \mathbb{R}^{m}. The vector partial derivative $\frac{\partial \vec{f}}{\partial x_{i}}$ then is exactly the same thing as the tangent vector to this coordinate curve.

Parametrized Surfaces

A curved surface $z=f(x, y)$ in \mathbb{R}^{3} can be represented in a parametrized way as $\vec{x}(u, v)=$ $\vec{f}(u, v)$ where $\vec{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. This is the multi-dimensional equivalent to the way a curve in \mathbb{R}^{2} can be represented parametrically by $\vec{x}(t)=\vec{f}(t)$ where $\vec{f}: \mathbb{R} \rightarrow \mathbb{R}^{2}$.

Quadric Surfaces

Quadric Surfaces are level sets in \mathbb{R}^{3} of second degree polynomials in three variables. In other words they have the form $A x^{2}+B y^{2}+C z^{2}+D=0$. There are six different distinct types of quadric surfaces, all of which are displayed on page 196 of Williamson \& Trotter. There's a great interactive web resource called the "Interactive Gallery of Quadric Surfaces." The curves are:
hyperboloid of one sheet $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z^{2}=k>0$
hyperboloid of two sheets $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z^{2}=k<0$
elliptic cone $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z^{2}=0$
ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
elliptic paraboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-z=0$
hyperbolic paraboloid $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-z=0$

EXAMPLE 1

Show that an elliptic cone can be represented parametrically by $\vec{x}(u, v)=\left[\begin{array}{c}a u \cos v \\ b u \sin v \\ u\end{array}\right]$

When a surface is represented parametrically, the tangent plane can be represented as

$$
\vec{x}=u \frac{\partial \vec{x}}{\partial u}\left(u_{0}, v_{0}\right)+v \frac{\partial \vec{x}}{\partial v}\left(u_{0}, v_{0}\right)+\vec{x}\left(u_{0}, v_{0}\right)
$$

Exercise

Show that the parametrized surface $\vec{x}=\left[\begin{array}{c}2 \cos u \sin v \\ 3 \sin u \sin v \\ 4 \cos v\end{array}\right]$ represents the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{25}=1$ and find the parametrized equation of the tangent plane at $\vec{x}(0,0)$.

