Multivariable Calculus

Math 212 Fall 2005 ©2005 Ron Buckmire Fowler 307 MWF 9:30pm - 10:25am http://faculty.oxy.edu/ron/math/212/05/

Class 9: Monday September 26

SUMMARY Visualizing Multivariable Functions
CURRENT READING Williamson & Trotter, Section 4.2
HOMEWORK Williamson & Trotter, page 192: # 1, 4, 9, 10, 18

DEFINITION

The **graph** of a scalar function of a vector variable $f(\vec{x})$ is defined to be the set of ordered pairs $(\vec{x}, f(\vec{x}))$ where \vec{x} is in the domain of f. In this case we say that the graph of f is **explicitly** represented by f.

In practice the only scalar functions of a vector function that we can really get a good handle on visually are either of the type $f : \mathbb{R} \to \mathbb{R}$ or $f : \mathbb{R}^2 \to \mathbb{R}$. These are (x, f(x)) and (x, y, f(x, y)) respectively. We know all about the first case so we will be concentrating on the second case, which are often called **surfaces** and denoted z = f(z, y) so that the ordered pair looks like (x, y, z).

EXAMPLE 1 Graph the function $f(x, y) = 1 - x^2 - y^2$.

DEFINITION

The **level set** of a scalar function of a vector variable $f(\vec{x})$ is defined to be the set of values \vec{x} in the domain of f such that $f(\vec{x}) = k$.

EXAMPLE 2

Describe the level sets of $f(x, y) = 1 - x^2 - y^2$.

Computer Generated Graphing

Go to the website http://hypatia.math.uri.edu/ bkaskosz/flashmo/tools/

Use the appropriate program to generate graphs of

(a)
$$f(x,y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$
 on $-\pi \le x \le \pi$, $-\pi \le y \le \pi$

(b)
$$x = \cos(2t), y = 3\sin(2t), z = t/4$$
 for $0 \le t \le 20\pi$

(c)
$$x = t^5, y = t^2$$
 for $0 \le t \le 2$

Exercise

Williamson & Trotter, page 192, #2. Consider the function $g(x,) = \ln(x+y)$.

- (a) Describe the domain of g, making it as large as possible.
- (b) For what values of (x, y) does the graph of g lie above the xy-plane?
- (c) Describe the image of g

Exercise Williamson & Trotter, page 192, #13. Describe the k = 0 level set of f(x, y, z) = xyz.