Multivariable Calculus

Math 212 Fall 2005
(C)2005 Ron Buckmire

Fowler 307 MWF 9:30pm - 10:25am
http://faculty.oxy.edu/ron/math/212/05/

Class 9: Monday September 26

SUMMARY Visualizing Multivariable Functions
CURRENT READING Williamson \& Trotter, Section 4.2
HOMEWORK Williamson \& Trotter, page 192: \# 1, 4, 9, 10, 18

DEFINITION

The graph of a scalar function of a vector variable $f(\vec{x})$ is defined to be the set of ordered pairs $(\vec{x}, f(\vec{x}))$ where \vec{x} is in the domain of f. In this case we say that the graph of f is explicitly represented by f.
In practice the only scalar functions of a vector function that we can really get a good handle on visually are either of the type $f: \mathbb{R} \rightarrow \mathbb{R}$ or $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. These are $(x, f(x))$ and $(x, y, f(x, y))$ respectively. We know all about the first case so we will be concentrating on the second case, which are often called surfaces and denoted $z=f(z, y)$ so that the ordered pair looks like (x, y, z).
EXAMPLE 1
Graph the function $f(x, y)=1-x^{2}-y^{2}$.

DEFINITION

The level set of a scalar function of a vector variable $f(\vec{x})$ is defined to be the set of values \vec{x} in the domain of f such that $f(\vec{x})=k$.
EXAMPLE 2
Describe the level sets of $f(x, y)=1-x^{2}-y^{2}$.

Computer Generated Graphing

Go to the website http://hypatia.math.uri.edu/ bkaskosz/flashmo/tools/
GroupWork
Use the appropriate program to generate graphs of
(a) $f(x, y)=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$ on $-\pi \leq x \leq \pi, \quad-\pi \leq y \leq \pi$
(b) $x=\cos (2 t), y=3 \sin (2 t), z=t / 4$ for $0 \leq t \leq 20 \pi$
(c) $x=t^{5}, y=t^{2}$ for $0 \leq t \leq 2$

Exercise

Williamson \& Trotter, page 192, \#2. Consider the function $g(x)=,\ln (x+y)$.
(a) Describe the domain of g, making it as large as possible.
(b) For what values of (x, y) does the graph of g lie above the $x y$-plane?
(c) Describe the image of g

Exercise

Williamson \& Trotter, page 192, \#13. Describe the $k=0$ level set of $f(x, y, z)=x y z$.

