Multivariable Calculus

Math 212 Fall 2005
(C) 2005 Ron Buckmire

Fowler 111 MWF 9:30pm - 10:25am
http://faculty.oxy.edu/ron/math/212/05/

Class 3: Friday September 9

SUMMARY The Dot Product and its Implications and Applications
CURRENT READING Williamson \& Trotter, Section 1.4 and 1.5
HOMEWORK Williamson \& Trotter, $\S 1.4 \# 5,6,7,8,9,18,21,22,27 ; ~ § 1.5 \# 9,22$

Dot Product

Given two vectors in $\mathbb{R}^{n}, \vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ the dot product is defined as:

$$
\vec{x} \cdot \vec{y}=\sum_{k=1}^{n} x_{k} y_{k}=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+\ldots+x_{n} y_{n}
$$

The dot product is a very useful operation that allows us to represent a number of interesting results.

$\underline{\text { Magnitude of a Vector }}$

$$
|\vec{x}|=\sqrt{\vec{x} \cdot \vec{x}}
$$

Angles Between Vectors

The dot product also defines an expression for the angle between two vector \vec{x} and \vec{y}

$$
\vec{x} \cdot \vec{y}=|\vec{x}||\vec{y}| \cos (\theta)
$$

which leads to the Cauchy-Schwarz Inequality

$$
\vec{x} \cdot \vec{y} \leq|\vec{x}||\vec{y}|
$$

Law of Cosines

$$
|\vec{x}-\vec{y}|^{2}=|\vec{x}|^{2}+|\vec{y}|^{2}-2|\vec{x}||\vec{y}| \cos (\theta)
$$

Triangle Inequality

$$
|\vec{x}+\vec{y}| \leq|\vec{x}|+|\vec{y}|
$$

Properties of the Dot Poduct

Positivity: $\vec{x} \cdot \vec{x}>0$ (except when $\vec{x}=\overrightarrow{0}$)
Symmetry: $\vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{x}$
Additivity: $(\vec{x}+\vec{y}) \cdot \vec{z}=\vec{x} \cdot \vec{z}+\vec{y} \cdot \vec{z}$
Homogeneity: $(r \vec{x}) \cdot \vec{y}=r(\vec{x} \cdot \vec{y})$

GROUPWORK

For the given vector $\vec{u}=(3,1,1)$ and $\vec{v}=(4,1,0)$ find $\vec{u} \cdot \vec{v},|\vec{u}|,|\vec{v}|$ the angle between \vec{v} and \vec{u} and normalize each of the vectors.

EXERCISE

Williamson \& Trotter, page 32, \# 28. Show that the sum of the squares of the lengths of a the four sides of a parallelogram is equal to the sum of the squares of the diagonals. [HINT: Sketch the two vectors \vec{x} and \vec{y} and obtain expressions for the diagonals in terms of \vec{x} and \vec{y}.]

