Quiz 3	Multivariable Calculus
Name:	<u> </u>
Date: Time Begun: Time Ended:	Friday September 23 Ron Buckmire
Topic: Review of Linear Systems	
The idea behind this quiz is to provide you with an op systems.	portunity to illustrate your understanding of linear
Reality Check:	
EXPECTED SCORE :/10	ACTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz posted to h	nttp://faculty.oxy.edu/ron/math/212/05/
1. Once you open the quiz, you have 30 minute end time at the top of this sheet.	s to complete, please record your start time and
2. You may use the book or any of your class no	otes. You must work alone.
3. If you use your own paper, please staple it to have a stapler, buy one.	o the quiz before coming to class. If you don't
4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.	
5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.	
6. Relax and enjoy	
7. This quiz is due on Monday September 26, in class. NO LATE QUIZZES WILL BE ACCEPTED.	

Pledge: I, ______, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.

Consider the planes x + 2y + z = 0 and x - 3y - z = 0.

1. (4 points) Find the intersection of these two planes or **EXPLAIN** why the intersection does not exist.

2. (6 points) Consider the related linear system with unknown constant parameters A, B and C

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & -3 & -1 \\ A & B & C \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

(a) 2 points) Is it possible to find values of A, B and C such that the linear system has **no solution**? **FULLY EXPLAIN YOUR ANSWER**.

(b) (2 points) Is it possible to find values of A, B and C such that the linear system has **ONE** solution? FULLY EXPLAIN YOUR ANSWER.

(c) (2 points) Is it possible to find values of A, B and C such that the linear system has MORE THAN ONE solution? FULLY EXPLAIN YOUR ANSWER.