The idea behind this quiz is to provide you with an opportunity to illustrate your ability to compute dot products and cross products.

Instructions:

0. Please look for a hint on this quiz posted to faculty.oxy.edu/ron/math/212/05

1. Once you open the quiz, you have 30 minutes to complete, please record your start time and end time at the top of this sheet.

2. You may use the book or any of your class notes. You must work alone.

3. If you use your own paper, please staple it to the quiz before coming to class. If you don’t have a stapler, buy one.

4. After completing the quiz, sign the pledge below stating on your honor that you have adhered to these rules.

5. Your solutions must have enough details such that an impartial observer can read your work and determine HOW you came up with your solution.

6. Relax and enjoy...

7. This quiz is due on Monday September 19, in class. NO LATE QUIZZES WILL BE ACCEPTED.

Pledge: I, __________________, pledge my honor as a human being and Occidental student, that I have followed all the rules above to the letter and in spirit.
1 Consider the two vectors $\vec{a} = (1, -2, 1)$ and $\vec{b} = (-2, 1, 1)$.

a. (2 points) Compute $\vec{a} \cdot \vec{b}$.

b. (3 points) Compute $\vec{a} \times \vec{b}$.

c. (2 points) Find the value of θ_{ab}, the angle between \vec{a} and \vec{b}.

d. (3 points) By direct computation, confirm that the area of the parallelogram with sides \vec{a} and \vec{b} is given by $|\vec{a}| |\vec{b}| \sin(\theta_{ab}) = |\vec{a} \times \vec{b}|$.