BONUS Quiz $\bf 5$

Multivariable Calculus

Name:	
Date: Time Begun: Time Ended:	Friday November 4 Ron Buckmire
Topic: Approximating A Multivariable Function	
The idea behind this quiz is to provide you with an opportunity and Approximation of a Multivariable Function.	to illustrate your understanding of Taylor
Reality Check:	
EXPECTED SCORE :/10 AC	CTUAL SCORE :/10
Instructions:	
0. Please look for a hint on this quiz posted to faculty.	oxy.edu/ron/math/212/05/.
1. Once you open the quiz, you have 30 minutes to compend time at the top of this sheet.	plete, please record your start time and
2. You may use the book or any of your class notes. You	must work alone.
3. If you use your own paper, please staple it to the qui have a stapler, buy one.	z before coming to class. If you don't
4. After completing the quiz, sign the pledge below stating to these rules.	g on your honor that you have adhered
5. Your solutions must have enough details such that an and determine HOW you came up with your solution.	impartial observer can read your work
6. Relax and enjoy	
7. This quiz is due on Monday November 7, in carried ACCEPTED.	lass. NO LATE QUIZZES WILL BE
Pledge: I,, pledge my honor as that I have followed all the rules above to the letter and in s	

1. Consider the Cobb-Douglas production function $P = bL^{\alpha}K^{1-\alpha}$ where the total production P of a certain product depends on the amount of labor L used and the amount K of capital investment $(0 < \alpha < 1 \text{ and } b > 0.)$

If the cost of a unit of labor is m and the cost of unit of capital is n, given that a company can only spend p dollars as its total budget, then maximizing the production P is subject to the constraint mL + nK = p.

(a) (5 points.) Write down the three equations which need to be solved in order to maximize P subject to the constraint p = mL + nK

(b) (5 points.) Show that the maximum production P(L, K) occurs when $L = \frac{\alpha p}{m}$ and $K = \frac{(1-\alpha)p}{n}$.