Test 2: Multivariable Calculus

Math 224
Ron Buckmire

Friday April 162004
2:30pm-3:30pm

Name:

Directions: Read all problems first before answering any of them. Questions 1 and 2 are related. This is a one hour, open-notes, open book, test. No calculators. You must show all relevant work to support your answers. Use complete English sentences and CLEARLY indicate your final answers to be graded from your "scratch work."

No.	Score	Maximum
1		20
2		20
3		20
4		20
5		20
Extra Credit		10
Total		$\mathbf{1 0 0}$

1. (20 points.) Chain Rule, Implicit Function Theorem.

Consider a surface implicitly-defined as $F(x, y, z)=0$ which can be written as $z=f(x, y)$ so that $F(x, y, f(x, y))=0$.
a. (10 points) Use the Chain Rule to show that $\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0$ and $\frac{\partial F}{\partial y}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial y}=0$
b. (10 points) Use the implicit function theorem to obtain the equivalent result, that is, $\frac{\partial z}{\partial x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$ and $\frac{\partial z}{\partial y}=-\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$
2. (20 points.) Partial Differentiation, Gradient Operator.

Consider $\cos (x+y+z)=x y z$ as an example of $F(x, y, z)=0$ and $z=f(x, y)$ from Question 1 . a. (10 points) Write down F and f, if you can. (If you can't, explain why the requested expression can not be obtained.) How are these two functions different?
b. (10 points) Write down $\vec{\nabla} F$ and $\vec{\nabla} f$, if you can. (If you can't, explain why the requested expression can not be obtained.) How are these two vectors different?
3. (20 points.) Iterated Integration.
a. (10 points) Evaluate $\int_{-3}^{0} \int_{0}^{2} \int_{-1}^{1} \cos (x+y+z)-x y z d x d z d y$
b. (10 points) Evaluate $\int_{1}^{2} \int_{0}^{\ln x} \frac{1}{x} d y d x$
4. (20 points.) Multiple Integration.
a. (10 points) Evaluate $\iint_{R} y e^{x} d A$ where R is the first quadrant of the circle of radius 4 centered at the origin. (Sketch the region R).
b. (10 points) Consider $\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} d z d y d x=\frac{1}{12}$. Re-compute this integral using a different triple integral which represents the same volume.
5. (20 points.) Constrained Multivariable Optimization, Lagrange Multipliers

The "geometric mean" of n numbers is defined as $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sqrt[n]{x_{1} x_{2} x_{3} \ldots x_{n}}$. Suppose that $x_{1}, x_{2}, \ldots, x_{n}$ are positive numbers such that $\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+x_{3}+\ldots x_{n}=c$, where c is a constant.
a. (10 points) Find the maximum value of the geometric mean of n positive numbers given the constraint that their sum must be equal to a constant. [HINT: Consider f^{n} instead of $f!$]
b. (10 points) You can deduce from part (a) that the geometric mean of n numbers is always less than or equal to the arithmetic mean, that is:

$$
\sqrt[n]{x_{1} x_{2} x_{3} \ldots x_{n}} \leq \frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}
$$

Under what conditions will the geometric mean be exactly equal to the arithmetic mean of those same n numbers?

EXTRA CREDIT (10 points.) Unconstrained Multivariable Optimization
Consider $f(x, y)=x^{4}+y^{4}-4 x y+1$.
a. (5 points) Find the three critical points of $f(x, y)$.
b. (5 points) Use the Second Derivative Test to classify each of the three critical points of $f(x, y)$.

