Convergence Tests for In⁻nite Series

I. n-th Term Test for Divergence

This test comes about from the de⁻nition of what convergence of a series means.

If $\lim_{n \ge 1} a_n \in 0$ (or does not exist) then the series $\sum_{k=1}^{k} a_k = a_1 + a_2 + a_3 + a_4 + :::$ diverges.

Associated with the above fact is the idea that **IT IS TRUE** that if $\sum_{k=1}^{k} a_k$ CONVERGES, then $\lim_{n! \to 1} a_n = 0$.

We know from class is that **IT IS NOT TRUE** that if $\lim_{n \ge 1} a_n = 0$ then $\sum_{k=1}^{k} a_k$ CONVERGES.

II. Integral Test for Convergence and Divergence

This test relates facts about improper integrals to facts about in nite series.

Suppose f(x) is a continuous and decreasing function and f(x) > 0 for all $x \downarrow 1$: Let a(k) = f(k). THEN (a) If the f(x)dx CONVERGES, then the in nite series a_k CONVERGES. (b) If the $\begin{bmatrix} z \\ 1 \\ 1 \end{bmatrix} f(x)dx$ DIVERGES, then the in nite series a_k DIVERGES. (c) $a_k = 1$

De nition For p > 0 the in nite series $\frac{\mathbf{X}}{k=1} \frac{1}{k^p}$ is called a p-series.

If one applies the integral test to the p-series then if $p \cdot 1$, then p-series $\begin{array}{c} \bigstar \\ k=1 \end{array} \frac{1}{k^p} \text{ DIVERGES.} \\ \text{If } p > 1$, then the p-series $\begin{array}{c} \bigstar \\ k=1 \end{array} \frac{1}{k^p} \text{ CONVERGES.} \end{array}$

III. Comparison Test for Convergence and Divergence

(a) If
$$\mathbf{0} \cdot \mathbf{b}_k \cdot \mathbf{a}_k$$
 for each k and $\mathbf{X}_{k=1}^{\mathbf{k}} \mathbf{a}_k$ converges, then $\mathbf{X}_k^{\mathbf{k}} \mathbf{b}_k$ also CONVERGES.
(b) If $\mathbf{0} \cdot \mathbf{a}_k \cdot \mathbf{c}_k$ for each k and $\mathbf{X}_{k=1}^{k=1} \mathbf{a}_k$ diverges, then $\mathbf{X}_{k=1}^{\mathbf{k}} \mathbf{c}_k$ also DIVERGES.

IV. Alternating Series Test

De⁻**nition** An in⁻nite series is said to be an **alternating series** if it can be written in the form $\overset{\mathbf{X}}{\underset{k=1}{\mathbf{X}}}_{k=1}$ (j 1)^ka_k or $\overset{\mathbf{X}}{\underset{k=1}{\mathbf{X}}}_{k=1}$ (j 1)^ka_k where a₁; a₂; a₃; ::: are all positive numbers.

If the terms of the series are (i) decreasing in magnitude and (ii) $\lim_{n! = 1} a_n = 0$ then the alternating series $\underset{k=1}{\overset{\bigstar}{}}(i = 1)^{k+1}a_k$ CONVERGES.

V. Absolute Ratio Test

For any in nite series
$$\mathbf{x}_{k=1}^{\mathbf{X}} \mathbf{a}_k$$
, if

$$\lim_{n! \to 1} \frac{1}{2} = L < 1$$
then $\mathbf{x}_{k=1}^{\mathbf{X}} \mathbf{a}_k$ CONVERGES.
If L > 1 or if $\mathbf{j}\mathbf{a}_{k+1} = \mathbf{a}_k \mathbf{j}$ does not exist, then $\mathbf{x}_{k=1}^{\mathbf{X}} \mathbf{a}_k$ DIVERGES
If L = 1 the test is INCONCLUSIVE.

VI. Limit Comparison Test

Let $\mathbf{x}_{k=1}^{\mathbf{x}} \mathbf{a}_k$, be an in⁻nite series of **positive** terms. (a) If $\mathbf{x}_{k=1}^{\mathbf{x}} \mathbf{c}_k$ is a **convergent** series of positive terms, and $\lim_{n! \to 1} \frac{\mathbf{a}_n}{\mathbf{c}_n}$ EXISTS and is NOT INFINITE then $\mathbf{x}_{k=1}^{\mathbf{x}} \mathbf{a}_k$ also CONVERGES. (b) If $\mathbf{x}_{k=1}^{\mathbf{x}} \mathbf{c}_k$ is a **divergent** series of positive terms, and $\lim_{n! \to 1} \frac{\mathbf{a}_n}{\mathbf{d}_n}$ EXISTS and is NOT ZERO or IS INFINITE then $\mathbf{x}_{k=1}^{\mathbf{x}} \mathbf{a}_k$ also DIVERGES.