C onvergence Tests for In^{-}nite Series

I. n-th Term Test for Divergence

This test comes about from the denition of what convergence of a series means.

If $\lim _{n!1} a_{n} \in 0$ (or does not exist) then the series ${ }_{k=1}^{\wedge} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+::$: diverges.

Associated with the above fact is the idea that IT IS TRUE that if ${ }_{k=1}^{\lambda_{k}} a_{k}$ CONVERGES, then $\lim _{n!} a_{n}=0$.

We know from class is that IT IS NOT TRUE that if $\lim _{n!1} a_{n}=0$ then ${ }_{k=1}^{n} a_{k}$ CONVERGES.
II. Integral Test for Convergence and Divergence

This test relates facts about improper integrals to facts about in ${ }^{-}$nite series.

Suppose $f(x)$ is a continuous and decreasing function and $f(x)>0$ for all $x, 1$: Let $a(k)=f\left(k_{z}\right)$. THEN
(a) If the ${ }_{1} f(x) d x$ CONVERGES, then the in ${ }^{-}$nite series $a_{k} a_{k}$ CONVERGES.

De ${ }^{-}$nition For $p>0$ the in^{-}nite series ${ }_{k=1}^{\lambda} \frac{1}{\mathrm{k}^{p}}$ is called a p -series.

If one applies the integral test to the p-series then
if p - 1 , then p-series ${ }_{k=1}^{\lambda} \frac{1}{k^{p}}$ DIVERGES.
If $\mathrm{p}>1$, then the p -series ${ }_{\mathrm{k}=1} \frac{1}{\mathrm{k}^{\mathrm{p}}}$ CONVERGES.

III. Comparison Test for Convergence and Divergence

(a) If $0 \cdot b_{k} \cdot a_{k}$ for each k and ${ }^{\lambda} a_{k}$ converges, then ${ }^{\lambda^{A}} b_{k}$ also CONVERGES.
(b) If $0 \cdot a_{k} \cdot c_{k}$ for each k and $\sum_{k=1}^{k=1} a_{k}$ diverges, then $\sum_{k=1}^{\lambda_{k=1}^{k=1}} c_{k}$ also DIVERGES.

IV. Alternating Series Test

De ${ }^{-}$nition $A n$ in $^{-}$nite series is said to be an alternating series if it can be written in the form ${ }_{k=1}^{\lambda}(i 1)^{k} a_{k}$ or ${ }_{k=1}^{\lambda}(i 1)^{k} a_{k}$ where $a_{1} ; a_{2} ; a_{3} ;::$: are all positive numbers.

If the terms of the series are (i) decreasing in magnitude and (ii) $\lim _{n!1} a_{n}=0$ then the alternating series ${ }_{k=1}^{\lambda}(i 1)^{k+1} a_{k}$ CONVERGES.

V. Absolute Ratio Test

For any in ${ }^{-}$nite series ${ }_{k=1}^{\lambda} a_{k}$, if

$$
\lim _{n!1} \frac{\overline{\overline{-}} a_{n+1}}{\bar{a}_{n}}=L<1
$$

then ${ }^{\wedge} a_{k}$ CONVERGES.

$$
\mathrm{k}=1
$$

If $L>1$ or if $j a_{k+1}=a_{k} j$ does not exist, then ${ }_{k=1}^{\wedge} a_{k}$ DIVERGES
If $L=1$ the test is INCONCLUSIVE.

VI. Limit Comparison Test

Let ${ }_{k=1}^{\lambda} a_{k}$, be an in $^{-}$nite series of positive terms.
(a) If ${ }_{k=1}^{C_{k}}$ is a convergent series of positive terms, and $\lim _{n!1} \frac{a_{n}}{c_{n}}$ EXISTS and is NOT INFINITE then ${ }_{k=1}^{\lambda} a_{k}$ also CONVERGES.
(b) If ${ }_{k=1}^{x} c_{k}$ is a divergent series of positive terms, and $\lim _{n!1} \frac{a_{n}}{d_{n}}$ EXISTS and is NOT ZERO or IS INFINITE then ${ }^{\wedge} a_{k}$ also DIVERGES.

