Using Power Series To Represent Functions

RECALL

We showed last time that we could represent the function \(f(x) = \frac{1}{1-x} \) by the power series
\[
\sum_{n=0}^{\infty} x^n \quad \text{when} \quad -1 < x < 1.
\]
Can we do this for other functions? Sure!

Exercise

Let’s represent the function \(\frac{1}{1+x^2} \) by a power series. (Find the radius and interval of convergence of this power series.)

EXAMPLE

Remember \(\int \frac{1}{1+x^2} \, dx = \arctan(x) \) and \(\arctan(1) = \frac{\pi}{4} \).

We can use this information to show the amazing result

\[
\pi = 4 - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \ldots = 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \quad \text{(Leibniz \(\pi \) Formula)}
\]

So we have shown that \(\arctan(x) \) can be represented by a power series on the interval \(-1 \leq x \leq 1\).
Theorem

Given a power series \(\sum_{n=0}^{\infty} c_n(x-a)^n \) has radius of convergence \(R > 0 \), the function defined by \(f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n \) possesses a derivative \(f'(x) \) and anti-derivative \(F(x) \) on the interval \((a - R, a + R)\) with

(i) \(f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + 4c_4(x-a)^3 + \ldots = \sum_{n=0}^{\infty} c_n n(x-a)^{n-1} \)

(ii) \(F(x) = \int f(x) dx = C + c_0(x-a) + c_1 \frac{(x-a)^2}{2} + c_2 \frac{(x-a)^3}{3} + \ldots = C + \sum_{n=0}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1} \)

The radius of convergence of \(f'(x) \) and \(F(x) \) are both \(R \) (the same as the radius of convergence of \(f(x) \)). The intervals of convergence may differ however.

Group Work

Use this theorem to obtain a power series representation of \(\ln(1 + x) \). What are the interval of convergence and radius of convergence for the series.

Exercise

Stewart, page 475, #42. Find the sum of the series \(\sum_{n=1}^{\infty} \frac{4^n}{n5^n} \).