Range	$92.5+$	$90+$	$87.5+$	$82.5+$	$80+$	$77.5+$	$72.5+$	$70+$	$67.5+$	$62.5+$	$60+$	$60-$
Grade	A	A-	B+	B	B-	C+	C	C-	D+	D	D-	F
Frequency	5	2	1	4	1	1	2	2	1	0	0	2

Summary The results on Exam 2 were almost as good as on Exam 1 with an identical 8 of 21 students getting an A again, however this time there were two students getting an F . The median score was higher this time (84) but the mean was lower (82). The high score was 99. Congratulations to everyone!

\#1 ANALYTIC, VISUAL, COMPUTATUTIONAL. Area between curves, Curve length. The first thing to do is draw a picture on the given graph of what region A is. It's the area that is touching the y-axis at the left and then bounded below by $y=x^{3 / 2}$ and above by $y=2-x$.
a. To find the area of the region you can just use the $\int y_{T}-y_{B} d x$ formula and integrate vertical slices (i.e. it's a $d x$ integral) from $x=0$ to $x=1$ (which you can see from the gtaph is where the two curves intersect). So, $A=\int_{0}^{1} 2-x-x^{3 / 2} d x$.

$$
\begin{aligned}
A=\int_{0}^{1} 2-x-x^{3 / 2} d x & =2 x-\frac{x^{2}}{2}-\left.\frac{2}{5} x^{5 / 2}\right|_{0} ^{1} \\
& =2-\frac{1}{2}-\frac{2}{5} \\
& =\frac{20-5-4}{10} \\
A & =\frac{11}{10} .
\end{aligned}
$$

(b) To find the length of the perimieter of region A you have a vertical line segment aloing the y-axis (2 units), and the curved segment along $y=x^{3 / 2}$ and then an angled line segment from $(1,1)$ to $(0,2)$. Using Pythagoras Theorem (or distance formula) lets you know that segment is $\sqrt{2}$. For the curved segment you can use the arclength formula $\int_{0}^{1} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ where since $y=x^{3 / 2}$ you know $\frac{d y}{d x}=\frac{3}{2} x^{1 / 2}$ and when you square that it becomes $\frac{9 x}{4}$ so the entire length of the perimieter is $\sqrt{2}+2+\int_{0}^{1} \sqrt{1+\frac{9 x}{4}} d x$.
\#2 ANALYTIC, VISUAL, COMPUTATIONAL. Volume of solids of revolution. (a) When you rotate region A from problem 1 around the y-axis you can use either disks or shells for this problem. For disks the integral looks like $\pi \int_{0}^{2} x^{2} d y$ and becomes $\int_{0}^{1} \pi\left(y^{2 / 3}\right)^{2} d y+\int_{1}^{2} \pi(2-$ $y)^{2} d y$. Using shells the integral looks like $\int_{0}^{1} 2 \pi x f(x) d x$ which becomes $\int_{0}^{1} 2 \pi x(2-x-$ $\left.x^{3 / 2}\right) d x=2 \pi \int_{0}^{1} 2 x-x^{2}-x^{5 / 2} d x=x^{2}-\frac{x^{3}}{3}-\left.\frac{2}{7} x^{7 / 2}\right|_{0} ^{1}$. This volume is $\frac{16 \pi}{21}$.
(b) When you rotate region A from problem 1 around the x-axis you can use either washers or shells. For washers the integral looks like $\int_{0}^{1} \pi y_{\text {top }}^{2}-y_{\text {bottom }}^{2} d x$ which becomes $\int_{0}^{1} \pi(2-x)^{2}-$ $\left(x^{3 / 2}\right)^{3} d x=\int_{0}^{1} 4-4 x+x^{2}-x^{3} d x=\left.\pi\left(4 x-2 x^{2}+x^{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}$. If you want to use shells the integral looks like $\int_{0}^{2} 2 \pi y g(y) d y$. Specifically, it becomes $2 \pi \int_{0}^{1} y \cdot y^{2 / 3} d y+2 \pi \int_{1}^{2} y$. $(2-y) d y=2 \pi \int_{0}^{1} y^{5 / 3} d y+2 \pi \int_{1}^{2} 2 y-y^{2} d y$. This volume is $\frac{25 \pi}{12}$.
\#3 ANALYTIC, COMPUTATIONAL. Differential equations, partial fractions. (a) You can use separation of variables to solve $\frac{d w}{d t}=w^{2} t, w(0)=-2$.

$$
\begin{aligned}
\frac{d w}{d t} & =w^{2} t \\
\frac{d w}{w^{2}} & =t d t \\
\int w^{-2} d w & =\int t d t \\
-\frac{1}{w} & =\frac{t^{2}}{2}+C \\
-\frac{1}{-2} & =\frac{0^{2}}{2}+C \quad \text { (Using the intial condition that when } t=0 \text { and } w=-2 \text {) } \\
\frac{1}{2} & =C \\
-\frac{1}{w} & =\frac{t^{2}}{2}+\frac{1}{2} \\
\frac{1}{w} & =-\frac{t^{2}}{2}-\frac{1}{2} \\
& =-\frac{\left(t^{2}+1\right)}{2} \\
w & =\frac{-2}{t^{2}+1}
\end{aligned}
$$

To check your answer you have to check both the initial condition and differential equation. In other words, when $t=0$ does $w=-2$? $w(0)=\frac{-2}{0^{2}+1}=-2$. Yes! And check the DE, does $w^{\prime}(t)$ equal to $w^{2} t$? $w^{\prime}(t)=2\left(t^{2}+1\right)^{-2} \cdot(2 t)=t \cdot \frac{4}{\frac{4}{\left.t^{2}+1\right)^{2}}}=t w^{2}$. Yes! (b) You can use partial fractions to split $\frac{y+3}{(y-1)(y+1)}=\frac{A}{y-1}+\frac{B}{y+1}$. This turns into the equation $y+3=A \cdot(y+1)+B \cdot(y-1)$. Letting $y=1$ gives the equation $4=2 \cdot A$ so $A=2$ and letting $y=-1$ produces $2=B \cdot(-2)$ so $B=-1$. Therefore $\int_{2}^{3} \frac{y+3}{(y-1)(y+1)} d y=$ $\int_{2}^{3} \frac{2}{y-1}+\frac{-1}{y+1} d y=2 \ln |y-1|-\ln |y+1|_{2}^{3}=(2 \ln 2-\ln 4)-(2 \ln 1-\ln 3)=\ln (3)$.
(a) FALSE "If a function $f(x)>0$ for all $x>1$ and $\lim _{x \rightarrow \infty} f(x)=0$, then $\int_{1}^{\infty} f(x) d x$ must converge." Because this statement has to always be true it is claiming that EVERY function which has the property $f(x)>0$ for all $x>1$ and $\lim _{x \rightarrow \infty} f(x)=0$ will produce a convergent improper integral of the first kind $\int_{1}^{\infty} f(x) d x$. But there are a lot of divergent integrals, so all one has to do is find one that has an integrand with those properties to provide a counterexample. The most immediate one is $f(x)=\frac{1}{x}$. This function has the required properties that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$ and $\frac{1}{x}>0$ for all $x>1$ but we also know that $\int_{1}^{\infty} \frac{1}{x} d x$ DIVERGES so the statement is not true for every function.
(b) TRUE. "If a function $f(x)>\frac{1}{x}>0$ for all $x>1$, then $\int_{1}^{\infty} f(x) d x$ must diverge." This is basically a statement of the comparison theorem where the function being compared to is $\frac{1}{x}$. Since we know that when $\frac{1}{x}$ is the integrand of an improper integral of the first kind the integral DIVERGES, and we know that $f(x)>\frac{1}{x}>0$ then we know that $\int_{1}^{\infty} f(x) d x>\int_{1}^{\infty} \frac{1}{x} d x$ so our new integral must be divergent as well.
(c) FALSE. "If you use the Midpoint Riemann sums to approximate a definite integral and you know that this estimate is an over-estimate, then it is also true that using Right-hand Riemann sums will give you an under-estimate." You know that when $f(x)$ is continuous and monotonic on an interval that $L<I<R$ if f is an increasing function (i.e. $f^{\prime}>0$) and $L>I>R$ if f is a decreasing function, where I is the exact value of the integral and L is the left-hand Riemann Sum approximation and R is the Right-hand Riemann Sum approximation. You should also know that when f is continuous and concave up (i.e. $f^{\prime \prime}>0$) that $M<I<T$ where M is the Midpoint Riemann Sun approximation and T is average of the Left and Right Riemann sums (also known as the Trapezoid approximation). If one has a continuous function that is concave down and increasing, Midpoint will be an over-estimate and Right-hand will be an over-estimate, so the scenario in the given statement (i.e. M over-estimate and R underestimate) is not always true. There is no related "over-under" relationship between M and R, as there is between M and T and between R and L

